Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
Lời giải:
b/
\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)
c/
$2x^3+x+3>0$
$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$
$\Leftrightarrow (x+1)(2x^2-2x+3)>0$
$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$
$\Leftrightarrow x+1>0$
$\Leftrightarrow x>-1$
A. 2x + y + 3 = 0
B. 2x + 3y - 8 = 0
C. 2x + 3y + 8 = 0
D. 3x - 2y + 1 = 0
$BC$ có vectơ chỉ phương là: $\overrightarrow{BC}=(2;3)$
Gọi $H$ là chân đường cao hạ từ $A$ xuống $BC$
$\Rightarrow AH$ có vectơ pháp tuyến là: $\overrightarrow{BC}=(2;3)$
$AH:2x+3y-8=0$
Chọn đáp án: $B$
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{x+y-4}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+y=a^2\\x+y=b^2+4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2-b^2-4\\y=-a^2+2b^2+8\end{matrix}\right.\)
Ta được hệ:
\(\left\{{}\begin{matrix}a+b=19\\a-3\left(a^2-b^2-4\right)+5\left(-a^2+2b^2+8\right)=-8\end{matrix}\right.\)
Tới đây chắc là đơn giản rồi đúng không? Thế trên xuống dưới là xong thôi
\(\begin{cases}x^5-3x^4+2x^2-2x+2\ge0\\x^4-2x^3-x+2=0\\x^2-3x+2=0\\\left(x^2-1\right)\left(x-2\right)=0\end{cases}\) (*)
\(x^5-3x^4+2x^2-2x+2\ge0\) (1)
\(x^4-2x^3-x+2=0\) (2)
\(x^2-3x+2=0\) (3)
\(\left(x^2-1\right)\left(x-2\right)=0\) (4)
Từ
\(x^2-3x+2=0\) (3) \(\Leftrightarrow\) x=1 hoặc x=2
x=1 thỏa mãn tất cả các phương trình, bất phương trình còn lại nên là nghiệm của hệ
x=2 không thỏa mãn (1) nên x=2 không là nghiệm của hệ
Vậy hệ phương trình (*) có nghiệm duy nhất là x=1
\(f\left(x\right)=\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x^2-5x+6\right)\left(5-x\right)}>0\)
\(\Leftrightarrow\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)\left(5-x\right)}>0\)
Bảng xét dấu:
Từ bảng xét dấu ta thấy nghiệm của BPT là: \(\left[{}\begin{matrix}x< 5\\\dfrac{3}{2}< x< 2\\3< x< 5\end{matrix}\right.\)
nhanh lên cảm ơn