K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

2x^2(x-3)=3x(x+2)-5

2x^2*x-2x^2*3=3x*x+3x*2-5

2x^3-6x^2=3x^2+6x-5

2x^3-6x^2-3x^2-6x+5

2x^3-9x^2-6x+5

2x^3-x^2-8x^2+4x-10x+5

x^2(2x-1)-4x(2x-1)-5(2x-1)

(2x-1)(x^2-4x-5)

(2x-1)(x^2+x-5x-5)

(2x-1)[x(x+1)-5(x+1)]

(2x-1)(x+1)(x-5)

20 tháng 3 2018

hơi dài so vs cách cô chữa nhưg cũg đc

2 tháng 2 2021

a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )

<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0

<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0

<=> 8x - 2 = 0

<=> x = 1/4

Vậy phương trình có 1 nghiệm x = 1/4

b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )

<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0

<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0

<=> -27x + 4 = 0

<=> x = 4/27

Vậy phương trình có 1 nghiệm x = 4/27

c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )

<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0

<=> x3 + 14 - 10x - x3 + 3x = 0

<=> -7x + 14 = 0

<=> x = 2

Vậy phương trình có nghiệm x = 2

d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)

<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)

<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)

<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)

<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)

<=> x = 23/4

Vậy phương trình có 1 nghiệm x = 23/4

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

20 tháng 1 2019

a) \(x^3-3x^2+4=0\)

\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)

\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)

\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow2x=0+3\)

\(\Leftrightarrow2x=3\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

5 tháng 2 2018

a)  \(x^3-3x^2+4=0\)

\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy....

15 tháng 1 2016

a/ (x2 - 4) + (x + 2)(3 - 2x) = 0

    => (x - 2)(x + 2) + (x + 2)(3 - 2x) = 0

    => (x + 2)(x - 2 + 3 - 2x) = 0

    => (x + 2)(1 - x) = 0

    => x + 2 = 0 => x = -2

    hoặc 1 - x = 0 => x = 1

b/ 2x+ 6x= x+ 3x

    => 2x3 + 5x2 - 3x = 0

    => x.(2x2 + 5x - 3) = 0

    => x = 0 

    hoặc 2x2 + 5x - 3 = 0 => (2x - 1)(x + 3) = 0 

    => 2x - 1 = 0 => x = 1/2

    hoặc x + 3 = 0 => x = -3

Vậy x = 0 , x = 1/2 , x = -3

c/ (2x - 5)= (x + 2)2

    => (2x - 5)2 - (x + 2)2 = 0

    => (2x - 5 + x + 2).(2x - 5 - x - 2) = 0 

    => (3x - 3).(x - 7) = 0

    => 3x - 3 = 0 => 3x = 3 => x = 1

    hoặc x - 7 = 0 => x = 7

Vậy x = 1 , x = 7

14 tháng 4 2020

a, x3-3x2+3x-1=0                                                   b, (2x-5)2-(x+2)2=0                                    c, x2-x=3x-3

<=>x3-x2-2x2+2x+x-1=0                                         <=>(2x-5-x-2)(2x-5+x+2)=0                       <=>x2-x-3x+3=0

<=>(x3-x2)-(2x2-2x)+(x-1)=0                                   <=>(x-7)(3x-3)=0                                       <=>x2-4x+3=0

<=>x2(x-1)-2x(x-1)+(x-1)=0                                    <=>x-7=0 hoặc 3x-3=0                               <=>x2-x-3x+3=0

<=>(x-1)(x2-2x+1)=0                                              1, x-7=0                 2, 3x-3=0                       <=>(x2-x)-(3x-3)=0

<=>(x-1)(x-1)2=0                                                      <=>x=7                <=>x=1                          <=>x(x-1)-3(x-1)=0

<=>x-1=0                                                                Vậy TN của PT là S={7;1}                           <=>(x-1)(x-3)=0

<=>x=1                                                                                                                                       <=>x-1=0 hoặc x-3=0

Vậy tập nghiệm của phương trình là S={1}                                                                                1, x-1=0                      2, x-3=0

                                                                                                                                                     <=>x=1                       <=>x=3

                                                                                                                                                     Vậy TN của PT là S={1;3}

12 tháng 2 2016

a)x2+(x-3)(3x-5)=9

<=>x2+3x2-5x-9x+15=9

,<=>4x2-14x+15=9

<=>4x2-14x+6=0

<=>4x2-12x-2x+6=0

<=>4x(x-3)-2(x-3)=0

<=>(x-3)(4x-2)=0

                 =>  x-3=0 hoặc 4x-2=0 =>x=3 hoặc x=1/2

b)(3x+2)2=(x-4)2

<=>(3x+2)2-(x-4)2=0

<=>(3x+2-x+4)(3x+2+x-4)=0                     (HẰNG ĐẲNG THỨC SỐ 3)

<=>(2x+6)(4x-2)=0

           =>2x+6=0 hoặc 4x-2 => x=-3 hoặc x=1/2

c)Chưa ra thông cảm ahihi

13 tháng 2 2016

c,                        x4+2x3-2x2+2x-3 = 0
<=> (x4-x3)+(3x3-3x2)+(x2-x)+(3x-3) = 0
<=> x3(x-1)+3x2(x-1)+x(x-1)+3(x-1)  = 0
<=>                   (x-1)(x3+3x2+x+3) = 0
<=>                 (x-1)[x2(x+3)+(x+3)] = 0
<=>                       (x-1)(x+3)(x2+1) = 0
<=>                                        x-1  =0  hoặc x+3=0   ( vì x2+1 khác 0 )
<=>                                            x =1 hoặc      x= -3

25 tháng 2 2017

a, Đặt \(2^x=t,t>0\)

Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)

Nếu t=2 => x=1

nếu t=8=> x=3

Vậy x=...

b, Đặt: \(2x^2-3x-1=t\)

pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)

* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)

Vậy x=...

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }