Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Đặt \(\sqrt{4x+5}=2y-3\Rightarrow4x+5=4y^2-12y+9\)
\(\Rightarrow y^2-3y+1=x\)
Ta được hệ: \(\left\{{}\begin{matrix}2x^2-6x-1=2y-3\\y^2-3y+1=x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1=y\\y^2-3y+1=x\end{matrix}\right.\)
Trừ vế cho vế: \(x^2-y^2-2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y\\y=2-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{2x+5}+3}{2}\\\dfrac{\sqrt{2x+5}+3}{2}=2-x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+5}=2x-3\\\sqrt{2x+5}=1-2x\end{matrix}\right.\)
Đến đây chắc bạn tự giải được
`2x^2-6x-1=sqrt{4x+5}(x>=-5/4)`
`<=>4x^2-12x-2=2sqrt{4x+5}`
`<=>4x^2-8x+4=4x+5+2\sqrt{4x+5}+1`
`<=>(2x-2)^2=(\sqrt{4x+5}+1)^2`
Đến đây dễ gòi
\(\Leftrightarrow\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}=-3\left(x-1\right)^2+8\)
Ta có:
\(\left\{{}\begin{matrix}\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}\ge\sqrt{9}+\sqrt{25}=8\\-3\left(x-1\right)^2+8\le8\end{matrix}\right.\)
\(\Rightarrow\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}\ge-3\left(x-1\right)^2+8\)
Đẳng thức xảy ra khi và chỉ khi \(x=1\)
Lời giải:
a. ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$
$\Leftrightarrow |\sqrt{x-4}+2|=2$
$\Leftrightarrow \sqrt{x-4}+2=2$
$\Leftrightarrow \sqrt{x-4}=0$
$\Leftrightarrow x=4$ (tm)
b. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
c.
PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)
a: ĐKXĐ: x>=-3/2
\(\sqrt{x^2+4}=\sqrt{2x+3}\)
=>\(x^2+4=2x+3\)
=>\(x^2-2x+1=0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1(nhận)
b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>x=4/3(nhận) hoặc x=-2(loại)
c:
Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)
ĐKXĐ: \(x>=-3\)
\(\sqrt{4x+12}=\sqrt{9x+27}-5\)
=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)
=>\(-\sqrt{x+3}=-5\)
=>x+3=25
=>x=22(nhận)
d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)
=>\(4x^2-6x+1=4x^2-20x+25\)
=>\(-6x+20x=25-1\)
=>\(14x=24\)
=>x=12/7(nhận)
b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:
\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)
Cái ngoặc to vô nghiệm.Do đó x = 1(TM)
Vậy...
P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn
\(x+\sqrt{5+\sqrt{x-1}}=6\)
\(\Leftrightarrow x-6+\sqrt{5+\sqrt{x-1}}=0\)
\(\Leftrightarrow x-1-5+\sqrt{5+\sqrt{x-1}}=0\)
Đặt \(\sqrt{x-1}=t\), ta có
\(t^2-5+\sqrt{5+t}=0\)
P/s tới đây giải tiếp nha bn :))
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
\(2x^2-6x-1=\sqrt{4x+5}\)
Đk:\(x\ge-\frac{5}{4}\)
\(\Leftrightarrow\left(2x^2-6x-1\right)^2=4x+5\)
\(\Leftrightarrow4x^4-23x^3+32x^2+12x+1=4x+5\)
\(\Leftrightarrow4x^4-24x^3+32x^2+8x-4=0\)
\(\Leftrightarrow4\left(x^4-6x^3+8x^2+2x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4x+1\right)\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+1=0\left(1\right)\\x^2-2x-1=0\left(2\right)\end{cases}}\)
\(\Delta_{\left(1\right)}=\left(-2\right)^2-\left(-4\left(1.1\right)\right)=8\)
\(\Leftrightarrow x=\frac{2-\sqrt{8}}{2}\left(tm\right)\)
\(\Delta_{\left(2\right)}=\left(-4\right)^2-4\left(1.1\right)=12\)
\(\Leftrightarrow x=\frac{4+\sqrt{12}}{2}\left(tm\right)\)