K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

a)  ĐK:  \(1\le x\le6\)

Đặt:  \(y=\sqrt{x-1}\ge0\) pt trở thành:

\(y^2+\sqrt{y+5}=5\)

\(\Leftrightarrow\)\(\hept{\begin{cases}y^4-10y^2-y+20=0\\0\le y\le\sqrt{5}\end{cases}}\)

Xét pt:   \(y^4-10y^2-y+20=0\)

\(\Leftrightarrow\)\(y^4=10y^2+y-20\)

\(\Leftrightarrow\)\(y^4+2my^2+m^2=\left(10+2m\right)y^2+y+m^2-20\)

Ta có:  \(\Delta_{VP}=1-4\left(m^2-20\right)\left(10+2m\right)=0\)

\(\Leftrightarrow\)\(m=-\frac{9}{2}\)

Viết lại pt ta có:

\(y^4-9y^2+\left(\frac{9}{2}\right)^2=y^4+y+\frac{1}{4}\)

\(\Leftrightarrow\)\(\left(y^2-\frac{9}{2}\right)^2-\left(y+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\)\(\left(y^2-y-5\right)\left(y^2+y-4\right)=0\)

giải ra tìm đc y  t/m là:   \(y=\frac{-1+\sqrt{17}}{2}\)

\(\Rightarrow\)\(x=\frac{11-\sqrt{17}}{2}\)

Vậy....

28 tháng 7 2018

b)  ĐK:  \(x\ge-\frac{4}{5}\)

Đặt:  \(y=\sqrt{4x+5}\ge0\)pt trở thành:

\(y^4-22y^2-8y+77=0\)

\(\Leftrightarrow\)\(y^4=22y^2+8y-77\)

\(\Leftrightarrow\)\(y^4+2my^2+m^2=\left(22+2m\right)y^2+8y+m^2-77\)

Ta có:  \(\Delta_{VP}=1-4\left(22+2m\right)\left(m^2-77\right)=0\)

\(\Leftrightarrow\)\(m=-9\)

Viết lại pt ta có:

\(y^4-18y^2+81=4y^2+8y+4\)

\(\Leftrightarrow\)\(\left(y^2-9\right)^2-\left(2y+2\right)^2=0\)

\(\Leftrightarrow\)\(\left(y^2+2y-7\right)\left(y^2-2y-11\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}y=-1+2\sqrt{2}\\y=1+2\sqrt{3}\end{cases}}\) (t/m)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1-\sqrt{2}\\x=2+\sqrt{3}\end{cases}}\)

Vậy....

p/s:do pt ban đầu bậc 4 nên ở 2 câu mk thêm 2my^2 + m^2 là để dễ dàng phân tích thành nhân tử. bạn có thể bỏ và phân tích ngay pt ban đầu

7 tháng 2 2021

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

7 tháng 2 2021

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

26 tháng 10 2023

a: ĐKXĐ: x>=-3/2

\(\sqrt{x^2+4}=\sqrt{2x+3}\)

=>\(x^2+4=2x+3\)

=>\(x^2-2x+1=0\)

=>\(\left(x-1\right)^2=0\)

=>x-1=0

=>x=1(nhận)

b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))

=>\(\sqrt{\left(x-3\right)^2}=2x-1\)

=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>x=4/3(nhận) hoặc x=-2(loại)

c:

Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)

ĐKXĐ: \(x>=-3\)

\(\sqrt{4x+12}=\sqrt{9x+27}-5\)

=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)

=>\(-\sqrt{x+3}=-5\)

=>x+3=25

=>x=22(nhận)

d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)

=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)

=>\(4x^2-6x+1=4x^2-20x+25\)

=>\(-6x+20x=25-1\)

=>\(14x=24\)

=>x=12/7(nhận)

19 tháng 8 2017

a) dat x-1=a

x=a+1

\(a+1+\sqrt{5+\sqrt{a}}=6\)

\(5-a=\sqrt{5+\sqrt{a}}\)

\(25-10a+a^2=5+\sqrt{a}\)

\(20-10a+a^2-\sqrt{a}=0\)

(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

19 tháng 8 2017

đúng nhưng b,c,d đâu

\(x+\sqrt{5+\sqrt{x-1}}=6\)

\(\Leftrightarrow x-6+\sqrt{5+\sqrt{x-1}}=0\)

\(\Leftrightarrow x-1-5+\sqrt{5+\sqrt{x-1}}=0\)

Đặt \(\sqrt{x-1}=t\), ta có

\(t^2-5+\sqrt{5+t}=0\)

P/s tới đây giải tiếp nha bn :))

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

2 tháng 9 2021

a, ĐKXĐ: \(x^2-4x+4\ge0\Rightarrow\left(x-2\right)^2\ge0\left(luônđúng\right)\)

 \(\sqrt{x^2-4x+4}=1\\ \Rightarrow x-2=1\\ \Rightarrow x=3\)

b,\(ĐKXĐ:1-4x+4x^2\ge0\Rightarrow\left(1-2x\right)^2\ge0\left(luônđúng\right)\)

 \(\sqrt{1-4x+4x^2}=5\\ \Rightarrow\left|1-2x\right|=5\\ \Rightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

d, ĐKXĐ: \(\left\{{}\begin{matrix}9x^2\ge0\\2x+1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x\ge0\)

\(\sqrt{9x^2}=2x+1\\ \Rightarrow\left|3x\right|=2x+1\\ \Rightarrow\left[{}\begin{matrix}3x=2x+1\\3x=-2x+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

2 tháng 9 2021

c, ĐKXĐ: \(1-2x+x^2\ge0\Rightarrow\left(1-x\right)^2\ge0\left(luônđúng\right)\)

 \(\sqrt{1-2x+x^2}-6=0\\ \Rightarrow\left|1-x\right|=6\\ \Rightarrow\left[{}\begin{matrix}1-x=-6\\1-x=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)

e, \(\left\{{}\begin{matrix}9-6x+x^2\ge0\\x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(3-x\right)^2\ge0\left(luônđúng\right)\\x\ge0\end{matrix}\right.\)\(\Rightarrow x\ge0\)

\(\sqrt{9-6x+x^2}=x\\ \Rightarrow\left|3-x\right|=x\\ \Rightarrow\left[{}\begin{matrix}3-x=-x\\3-x=x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3=0\left(vôlí\right)\\x=1,5\end{matrix}\right.\)

29 tháng 6 2018

xin bài này , 10 phút nữa làm

29 tháng 6 2018

bn kiểm tra lại đề câu a nhé

b) ĐKXĐ: \(\forall x\)

       \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\)\(\left|x-1\right|+\left|x-3\right|=2\) (1)

Nếu  \(x< 1\)thì:  \(\left(1\right)\Leftrightarrow\left(1-x\right)+\left(3-x\right)=2\)

                                      \(\Leftrightarrow\) \(4-2x=2\) \(\Leftrightarrow\) \(x=1\)(loại)

Nếu \(1\le x< 3\)thì:  \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(3-x\right)=2\)

                                               \(\Leftrightarrow\) \(x-1+3-x=2\)\(\Leftrightarrow\)\(0x=0\)  luôn đúng

Nếu \(x\ge3\)thì  \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(x-3\right)=2\)

                                     \(\Leftrightarrow\) \(2x-4=2\) \(\Leftrightarrow\) \(x=3\) luôn đúng

Vậy...

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~