\(|\)y + 3
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

\(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)

<=> \(x^2+2xy+y^2+x^2-6x+9=-\left|y+3\right|\)

<=> \(\left(x+y\right)^2+\left(x-3\right)^2=-\left|y+3\right|\)

Nhận thấy , VP lớn hớn hoặc bằng 0 với mọi x,y 

Mặt khác , VT lại bé hơn hoặc bằng 0 

=> \(\hept{\begin{cases}x+y=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}y=-3\\x=3\end{cases}}\)

17 tháng 5 2018

\(2x^2+2xy+y^2+9=6x-\left|y-3\right|\\ \Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-6x+9\right)=-\left|y-3\right|\\ \Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2=-\left|y-3\right|\)

Do \(-\left|y-3\right|\le0\forall x\)

\(\left(x+y\right)^2+\left(x-3\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x-3\right)^2=0\\-\left|y-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-3=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=3\\y=3\end{matrix}\right.\left(K^0\text{ }T/m\right)\)

Vậy phương trình vô nghiệm

17 tháng 5 2018

\(2x^2+2xy+y^2+9=6x-\left|y-3\right|\)

\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y-3\right|=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-6x+9\right)+\left|y-3\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y-3\right|=0\)

20 tháng 8 2017

=12x5y3-2x4y3+3xy2

3 tháng 1 2017

3x2-y2=2xy

=>3x2-y2-2xy=0

=>3x2-3xy+xy-y2=0

=>3x(x-y)+y(x-y)=0

=>(x-y)(3x+y)=0

Mà y # -3x => x-y=0 => x=y

Thay x=y vào biểu thức A, ta có:

A=\(\frac{2xy}{-6^2+xy+y^2}\)=\(\frac{2x^2}{-6x^2+x^2+x^2}\)=\(\frac{2x^2}{-4x^2}\)\(\frac{-1}{2}\)

29 tháng 1 2019

a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)

=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)

\(=3x^2y-2xy^2-5xy\)

b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)

=\(\dfrac{2y+5y}{x-2}\)

=\(\dfrac{7y}{x-2}\)

c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)

\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)

=\(\dfrac{x\left(y-3x\right)}{3x-y}\)

=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)

=-x

d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)

=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)

=\(\dfrac{1}{6}\)

4 tháng 4 2016

6)x- x3- 10x2+2x+4=0

<=>x- x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)

=>(x2-3x-2)(x2+2x-2)=0

Th1:x2-3x-2=0

denta(-3)2-(-4(1.2))=17

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)

Th2:x2+2x-2=0

denta:22-(-4(1.2))=12

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)

=>x=-căn bậc hai(3)-1,

x=3/2-căn bậc hai(17)/2,

x=căn bậc hai(3)-1,

x=căn bậc hai(17)/2+3/2

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

16 tháng 8 2021

Trả lời:

a, \(\left(2x-5\right)^3=\left(2x\right)^3-3.\left(2x\right)^2.5+3.2x.5^2-5^3=8x^3-60x^2+150x-125\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)=\left(2x+3\right)\left[\left(2x\right)^2-2x.3+3^2\right]=\left(2x\right)^3+3^3=8x^3+9\)

c, \(\left(\frac{1}{2}x+1\right)^3=\left(\frac{1}{2}x\right)^3+3\left(\frac{1}{2}x\right)^21+3\cdot\frac{1}{2}x.1^2+1^3=\frac{1}{8}x^3+\frac{3}{4}x^2+\frac{3}{2}x+1\)

d, \(\left(x-\frac{2}{3}y\right)\left(x^2+\frac{2}{3}xy+\frac{4}{9}y^2\right)=x^3-\left(\frac{2}{3}y\right)^3=x^3-\frac{8}{27}y^3\)

các bạn giúp mk vs ạ

a)\(\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\left(đkxđ:x\ne-1;-4;-6;3\right)\)

\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x+6\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{3}+\dfrac{1}{x-3}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)

\(\Leftrightarrow\dfrac{-4}{\left(x+1\right)\left(x-3\right)}=\dfrac{4}{3}\)

\(\Leftrightarrow\left(x+1\right)\left(3-x\right)=3\)

\(\Leftrightarrow2x-x^2+3=3\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\left(tm\right)\)

b)\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-y^2-4y-4-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Mà x,yEN*=>x-y-1<x+y+3

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy ...