Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
hình như đề sai vì x + (-2/3) không thể bằng x + 1/4 đúng k nhỉ :)
Lời giải:
$x,y$ tự nhiên
$(2x+1)(y^2-5)=12$.
$\Rightarrow 2x+1$ là ước của $12$
$x\in\mathbb{N}$ kéo theo $2x+1$ là số tự nhiên lẻ nên $2x+1$ là ước tự nhiên lẻ của $12$
$\Rightarrow 2x+1\in\left\{1; 3\right\}$
Nếu $2x+1=1$:
$y^2-5=\frac{12}{1}=12\Rightarrow y^2=17$ (không thỏa mãn do $y$ tự nhiên)
Nếu $2x+1=3$
$\Rightarrow x=1$
$y^2-5=\frac{12}{2x+1}=4\Rightarrow y^2=9=3^2=(-3)^2$
Do $y$ tự nhiên nên $y=3$
Vậy $(x,y)=(1,3)$
\(2x\left(x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy x =0 hoặc x= 10
\(2x.\left(x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0:2\\x=0-10\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-10\end{cases}}\)
Vậy để x thỏa mãn đề bài thì \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-10\end{cases}}\)
Loại bài toán này là bài toán về tích của dãy số. Đầu tiên, ta nhận thấy rằng dãy số cho trước có quy luật như sau: mỗi phân số trong dãy có tử số là một số lẻ và mẫu số là một số chẵn. Cụ thể hơn, tử số của phân số thứ n là 3n - 2 và mẫu số của phân số thứ n là 3n. Vậy, ta có thể viết lại A như sau: A = \prod_{n=1}^{82} \frac{3n-2}{3n} Bây giờ, để chứng minh A < 1/27, ta sẽ so sánh từng phần tử trong dãy với 1/3. Nếu tất cả các phần tử đều nhỏ hơn hoặc bằng 1/3, thì tích của chúng cũng sẽ nhỏ hơn hoặc bằng (1/3)^82 = 1/(3^82). Ta có: \frac{3n-2}{3n} = 1 - \frac{2}{3n} <= 1 - \frac{2}{3*1} = \frac{1}{3} Vậy, tất cả các phần tử trong dãy đều nhỏ hơn hoặc bằng 1/3. Do đó: A <= (1/3)^82 < (1/27) Vậy, ta đã chứng minh được rằng A < 1/27.
Bài 1
a, Có thể lập xy=21 <=> x=3;y=7 hoặc x=-3;y=-7
<=> x=7;y=3 hoặc x=-7;y=-3 ....v..v...
b, \(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow\orbr{\begin{cases}x+5=15\\y-3=15\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=18\end{cases}}}\)
c, \(\left(2x-1\right)\left(y-3\right)=12\)
\(\Rightarrow\orbr{\begin{cases}2x-1=12\\y-3=12\end{cases}\Rightarrow\orbr{\begin{cases}2x=13\\y=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{13}{2}\\y=15\end{cases}}}\)
Bài 2
Ư(6)={1;2;3;6} => 1+2+3+6=12
Ư(8)={1;2;4;8} => 1+2+4+8 =15
=> Tổng 2 ước này đều \(⋮3\)
๖²⁴ʱミ★Šїℓεŋէ❄Bʉℓℓ★彡⁀ᶦᵈᵒᶫ mù mắt =)) t làm mẫu câu b thôi, c nhìn vào mà làm
b) \(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow y-3=\frac{15}{x+5}\Rightarrow y=3+\frac{15}{x+5}\)
\(\Rightarrow x+5\inƯ\left(15\right)\)
Ta có: \(Ư\left(15\right)=\left\{-15;-5;-3;-1;0;1;3;5;15\right\}\)
\(x=\left\{0;-10;-8;-6;-20;-4;-2;0;10\right\}\)
Vì \(x\inℕ\Rightarrow x=\left\{0;10\right\}\)
\(\Rightarrow y=\left\{6;4\right\}\)
Vậy: (x,y) = {(0;10); (6;4)}
a: \(3x+1\in\left\{1;10;2;5\right\}\)
\(\Leftrightarrow3x\in\left\{0;9;1;4\right\}\)
hay \(x\in\left\{0;3;\dfrac{1}{3};\dfrac{4}{3}\right\}\)
b: \(x+3\in\left\{3;4;6;12\right\}\)
hay \(x\in\left\{0;1;3;9\right\}\)
3.[(2\(x\) + 10): \(x\)] = 12 (\(x\ne\) 0)
(2\(x\) + 10):\(x\) = 12 : 3
(2\(x\) + 10) : \(x\) = 4
2\(x\) + 10 = 4 x \(x\)
4\(x\) - 2\(x\) = 10
2\(x\) = 10
\(x=10:2\)
\(x=5\)
Vậy \(x=5\)
\(3\left[\dfrac{2x+10}{x}\right]=12\)
=>\(\dfrac{3\left(x+5\right)}{x}=6\)
=>3(x+5)=6x
=>2x=x+5
=>2x-x=5
=>x=5