K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Có 2TH:

  • TH1:x\(\in Z_-\)

 \(\Rightarrow\)2/x/-/x+1/=(-2x)-((-x)-1)=(-2x)-(-x)+1=(-x)+1=2

 \(\Rightarrow\)(-x)=2-1

 \(\Rightarrow\)(-x)=1

 \(\Rightarrow\)x=-1(1)

  • TH2:x\(\in Z_+\)

\(\Rightarrow\)2/x/-/x+1/=(2x)-(x+1)=(2x)-x-1=x-1=2

\(\Rightarrow\)x=2+1

\(\Rightarrow\)x=3(2)

Từ(1) và (2) suy ra: x\(\in\)(-1;3)

Vậy: x\(\in\)(-1;3)

15 tháng 4 2016

http://diendantoanhoc.net/topic/65613-chia-s%E1%BA%BB-gi%E1%BA%A3i-pt-ch%E1%BB%A9a-%E1%BA%A9n-trong-d%E1%BA%A5u-gia-tr%E1%BB%8B-tuy%E1%BB%87t-d%E1%BB%91i/

18 tháng 4 2016

Xét x\(\ge\) 2 ta có:

x-1+x-2=1

=>2x-3=1

=>x=3/2(loại)

Xét 1\(\le x<2\)

x-1-x+2=1

1=1(thỏa mãn với mọi 1\(\le x<2\)

Xét x<1

-x+1-x+2=1

-2x+3=1

x=-1(TMĐK)

Vậy với x=-1 và1\(\le x<2\)

thì |x-1|+|x-2|=1

18 tháng 4 2016

tìm x hả?

Tôi nghĩ là như này :)) Sai thì chịu nhá :((

Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)

Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)

Nên VP pt (1) cũng phải lớn hơn bằng 0

Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)

Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)

Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)

\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )

Vậy \(x=-2\) thỏa mãn pt.

6 tháng 2 2020
\(\left|x+1\right|\) - + + + +
3\(\left|x-1\right|\) - - + + +
\(\left|x\right|\) - - - + +
\(2\left|x-2\right|\) - - - - +
PT 2x-4=5x-2 2x-4=5x-2 -4x+2=2x-2 -4x+2=-2x+6

-1 0 1 2

1) x=-2/3>-1( loại)

2)

9 tháng 2 2018

\(x^3-6x^2+11x-6=0\\ \Leftrightarrow\left(x^3-x^2\right)-\left(5x^2-5x\right)+\left(6x-6\right)=0\\ \Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

9 tháng 2 2018
https://i.imgur.com/HQef4rf.jpg
8 tháng 2 2018

Giải bài toán bằng cách lập phương trình (Tiếp).

8 tháng 2 2018

Dat x2+2x+2=a (a>0)

pt<=> \(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)

=> \(\dfrac{\left(a-1\right)\left(a+1\right)}{a\left(a+1\right)}+\dfrac{a.a}{a\left(a+1\right)}=\dfrac{7}{6}\)

=> \(\dfrac{a^2-1}{a\left(a+1\right)}+\dfrac{a^2}{a\left(a+1\right)}=\dfrac{7}{6}\)

=> (2a2-1).6=7a(a+1)

=> 12a2-6=7a2+7a

=> 5a2-7a-6=0

8 tháng 2 2018

\(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)

Đặt x2 + 2x + 1 = t, ta có:

\(\dfrac{t}{t+1}+\dfrac{t+1}{t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{t\left(t+2\right)}{\left(t+1\right)\left(t+2\right)}+\dfrac{\left(t+1\right)^2}{\left(t+2\right)\left(t+1\right)}=\dfrac{7}{6}\)

\(\Leftrightarrow\) \(\dfrac{t^2+2t}{t^2+3t+2}+\dfrac{t^2+2t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{t^2+2t+t^2+2t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{2t^2+4t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)6(2t2+4t+1) = 7(t2 + 3t + 2)

\(\Leftrightarrow\) 12t2 + 24t + 6 = 7t2 + 21t + 14

\(\Leftrightarrow\) 12t2 + 24t + 6 - 7t2 - 21t - 14 = 0

\(\Leftrightarrow\) 5t2 + 3t - 8 = 0

\(\Leftrightarrow\) 5t2 - 5t + 8t - 8 = 0

\(\Leftrightarrow\) 5t(t - 1) + 8(t - 1) = 0

\(\Leftrightarrow\) (5t + 8)(t - 1) = 0

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5t+8=0\\t-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=-\dfrac{8}{5}\\t=1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2+2x+1=-\dfrac{8}{5}\left(vôlívì:x^2+2x+1=\left(x+1\right)^2\ge0>-\dfrac{8}{5}\right)\\x^2+2x+1=1\end{matrix}\right.\)\(\Leftrightarrow\)x2 + 2x + 1 = 1

\(\Leftrightarrow\) x2 + 2x = 0

\(\Leftrightarrow\)x(x + 2) = 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy phương trình có n0 là S={-2;0}

6 tháng 4 2016

Ta có: \(\frac{x+5}{7-3x}<0\)

Dễ dàng suy ra  \(x+5>0\)  và  \(7-3x<0\)  hoặc  \(x+5<0\)  hoặc  \(7-3x>0\)

Vì  \(x+5>7-3x\)  với mọi  \(x\)  nên khi đó, ta chỉ cần xét  \(x+5>0\)  và  \(7-3x<0\)

\(x+5>0\)  \(\Leftrightarrow\)  \(x>-5\)   \(\left(1\right)\)

\(7-3x<0\)  \(\Leftrightarrow\)  \(-3x<-7\)  \(\Leftrightarrow\)  \(x>\frac{7}{3}\)  \(\left(2\right)\)

Từ \(\left(1\right);\)  \(\left(2\right)\)  \(\Rightarrow\)  \(x>\frac{7}{3}\)

Vậy, với  \(x>\frac{7}{3}\)  thì  giá trị của phân thức trên luôn âm, tức là  \(\frac{x+5}{7-3x}<0\)

NV
28 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)

Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)

\(6\left(a^2-2\right)+7a-36=0\)

\(\Leftrightarrow6a^2+7a-48=0\)

Nghiệm xấu

10 tháng 3 2019

\(\left(x-1\right)^3+\left(2x-1\right)^3=\left(3x-2\right)^3\)

\(\left(3x-2\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(2x-1\right)+\left(2x-1\right)^2-\left(3x-2\right)^2\right]=0\)

\(\left(3x-2\right).\left(-3\right)\left(2x^2-3x+1\right)=0\)

\(\left(3x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy ....