\(2\sqrt{x^3+1}+\sqrt{\frac{x^4+16}{2}}=3x^2-6x+10\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2021

Ta có:

\(3x^2-6x+10-2\sqrt{x^3+1}-\sqrt{\frac{x^4+16}{2}}=0\)

Ta có:

\(VT=\left(x-2\right)^2+2x^2-2x+6-2\sqrt{\left(x+1\right)\left(x^2-x+1\right)}-\sqrt{\frac{x^4+16}{2}}\)

\(\ge2x^2-2x+6-\left(x+1+x^2-x+1\right)-\sqrt{\frac{x^4+16}{2}}\)

\(\ge x^2-2x+4-\sqrt{\frac{x^4+16}{2}}\)

Ta chứng minh:

\(x^2-2x+4-\sqrt{\frac{x^4+16}{2}}\ge0\)

\(\Leftrightarrow x^2-2x+4\ge\sqrt{\frac{x^4+16}{2}}\)

\(\Leftrightarrow\left(x^2-2x+4\right)^2\ge\frac{x^4+16}{2}\)

\(\Leftrightarrow\left(x-2\right)^4\ge0\)

Vậy \(VT\ge VP\)dấu = xảy ra khi \(x=2\) 

29 tháng 6 2019

a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)

So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)

Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha

a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)

\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)

Đặt \(\sqrt{x}=a\left(a>=0\right)\)

Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)

\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)

\(=12+16\left(12+5\sqrt{3}\right)\)

\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)

\(\Leftrightarrow x=a^2\simeq5,66\)

c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)

\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)

\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)

d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)

\(\Leftrightarrow3x-4001=0\)

hay x=4001/3

11 tháng 9 2018

\(\frac{5}{\sqrt{x^2}+1}\)hay\(\frac{5}{\sqrt{x^2+1}}\)v
b)
Đặt \(\sqrt{x-2}=a\)\(\sqrt{4-x}=b\)
Ta có hpt:
\(\hept{\begin{cases}a+b=-a^2b^2+3\\a^2+b^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=-a^2b^2+3\\\left(a+b\right)^2-2ab-2=0\end{cases}}}\)


\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2\\\left(-a^2b^2+3\right)^2-2ab-2=0\end{cases}}\)
Đặt ab=t rồi giải hệ nhé bạn

11 tháng 9 2018

Phần b cách ngắn hơn nè:
\(\sqrt{x-2}-1+\sqrt{4-x}-1=x^2-6x+9\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2}\right)^2-1}{\sqrt{x-2}+1}+\frac{\left(\sqrt{4-x}\right)^2-1}{\sqrt{4-x}+1}=\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-x+3\right)=0\)
\(\Rightarrow x=3\)
 

22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

10 tháng 8 2020

1. \(2-\sqrt{\left(3x+1\right)^2}=35\)

<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm

2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)

<=> \(\left|1-2x\right|=12-5\)

<=> \(\left|1-2x\right|=7\)

<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy S = {-3; 4}

10 tháng 8 2020

3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)

\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)

=> pt vô nghiệm

4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5

Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)

<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)

<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)

<=> \(\frac{5x+7}{x+3}=16\)

=> \(5x+7=16\left(x+3\right)\)

<=> \(5x+7=16x+48\)

<=> \(5x-16x=48-7\)

<=> \(-11x=41\)

<=> \(x=-\frac{41}{11}\)ktm

=> pt vô nghiệm