Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(\Leftrightarrow\)\(\frac{12x}{30}+\frac{10\left(3-2x\right)}{30}\ge\frac{15\left(3x+2\right)}{30}\)
\(\Leftrightarrow\)12x + 30 - 20x \(\ge\) 45x + 30
\(\Leftrightarrow\) 12x - 20x - 45x \(\ge\) -30 + 30
\(\Leftrightarrow\)- 53x \(\ge\)0
\(\Leftrightarrow\)x \(\le\)0
Vậy bất phương trình có nghiệm là : x \(\le0\)
b) \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\Leftrightarrow\)\(\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\) 12 - 4x + 10 > 9 - 3x
\(\Leftrightarrow\)-4x + 3x > -12 - 10 + 9
\(\Leftrightarrow\)-x > -13
\(\Leftrightarrow\)x < 13
Vậy bất phương trình có nghiệm là : x < 13
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
\(\frac{5x-3}{6}-\frac{7x-1}{4}-\frac{4x+2}{7}+5=0\)
<=> \(\frac{14\left(5x-3\right)-21\left(7x-1\right)-12\left(4x+2\right)+420}{84}=0\)
<=> 70x - 42 - 147x + 21 - 48x -24 + 420 = 0
<=> -125x + 375 = 0
<=> -125x = -375
<=> x = 3
Vậy S = {3}
\(\frac{3\left(2x+1\right)}{4}-5-\frac{3x+2}{10}=\frac{2\left(3x-1\right)}{5}\)
<=> \(\frac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\frac{8\left(3x-1\right)}{20}\)
<=> 30x + 15 - 100 - 6x - 4 = 24x - 8
<=> 24x - 24x = -8 + 89
<=> 0x = 81
=> pt vô nghiệm
<=>54x+36-18x-6=60+72x
<=>36x=30
<=>x=5/6
\(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)
<=> \(\frac{3\left(3x+2\right)-3x-1}{6}=\frac{10+12x}{6}\)
<=> 9x + 6 - 3x - 1 = 10 + 12x
<=> 6x - 12x = 10 - 5
<=> -6x = 5
<=> x = -5/6
<=>\(\left(\frac{x}{1}+\frac{2x}{3}+\frac{3x}{5}+...+\frac{20x}{39}\right)+\left(\frac{1}{1}+\frac{3}{3}+\frac{5}{5}+...+\frac{39}{39}\right)=20+2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)<=>
\(\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right).x+20=20+2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)
<=> \(\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right).x=2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)<=> x = 2
(x+1) / 1 + (2x+3) / 3 + (3x+5) / 5+ ... + (20x + 39) / 39
= 22 + 4 /3 + 6 / 5 +... + 40 /39
<=> x+ 1+ 2x / 3 +1 + 3x / 5+1+...+20x / 39+1 = 22+4 / 3+6 / 5+8 / 7+...+38 / 37+40 / 39
<=> (1+2 / 3+3 / 5+4 / 7+...+19 / 37+20 / 39)x + 20 = 22+4/3+6/5+8/7+...+38/37+40/39
<=> (1+2/3+3/5+4/7+...+19/37+20/39)x = 2(1 + 2/3 + 3/5 + 4/7 +...+ 19/37 + 20/39)
<=> x = 2
\(1+\frac{2x-5}{6}=\frac{3x}{4}\)
\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{9x}{12}\)
\(\Leftrightarrow12+2\left(2x-5\right)=9x\)
\(\Leftrightarrow12+4x-10=9x\)
\(\Leftrightarrow4x-9x=10-12\)
\(\Leftrightarrow-5x=-2\)
\(\Leftrightarrow x=\frac{2}{5}\)
\(1+\frac{2x-5}{6}=\frac{3x}{4}\)
\(\frac{24}{24}+\frac{8x-40}{24}=\frac{18x}{24}\)
\(24+8x-40=18x\)
\(-16+8x=18x\)
\(-16=10x\Leftrightarrow x=-\frac{8}{5}\)