Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x^2-1\ge0\)
pt <=> \(\left(x^2+2x+1\right)-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)-4x^2+4x-1=0\)
<=> \(\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)\right]-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}-2x+1\right)\left(x+1-\sqrt{x^2-1}+2x-1\right)=0\)
Phương trình tích. Dễ rồi đúng ko? Tự làm tiếp nhé!
1)ĐK : ........
đặt \(\sqrt{x+5}=a;\sqrt{x+2=b}\) ta có \(a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
=> \(\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(1+ab\right)=0\)
=> \(\left(a-b\right)\left(a+b-ab-1\right)=0\)
=> \(\left(a-b\right)\left(a-1\right)\left(1-b\right)=0\)
đến đây bạn tự giải nha
2) xét
VT = \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{1}+\sqrt{9}=4\)
Dấu = xảy ra khi x =3
\(-5-x^2+6x=-\left(x-3\right)^2+4\le4\)
Dấu bằng xảy ra tại x = 3
=> VT = VP = 4 tại x = 3
Vậy x = 3 là n* duy nhất
dk \(\hept{\begin{cases}x\left(3x+1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{3}\end{cases}}}\)
vì x khác 0 nên chia cả 2 vế cho \(\sqrt{x}\)ta được \(\sqrt{3x+1}-\sqrt{x-1}=2\sqrt{x}< =>\)\(\sqrt{x-1}+2\sqrt{x}-\sqrt{3x+1}=0< =>\)\(\sqrt{x-1}+\frac{4x-\left(3x+1\right)}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(\sqrt{x-1}+\frac{x-1}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(< =>\sqrt{x-1}\left(1+\frac{\sqrt{x-1}}{2\sqrt{x}+\sqrt{3x+1}}\right)=0< =>\sqrt{x-1}=0\) (vì biểu thức trong ngoặc luôn \(\ge1\)) <=> x-1= 0 <=> x=1 (thỏa mãn điều kiện)
\(a,\sqrt{5x^2+10x+1}=7-\left(x^2+2x\right)\)
Đặt: \(\sqrt{5x^2+10x+1}=t\ge0\) ta được:
\(t=7-\frac{t^2-1}{5}\)
\(\Rightarrow t^2+5t-36=0\)
\(\Rightarrow t=4\)
\(\Rightarrow\hept{\begin{cases}x_1=-3\\x_2=1\end{cases}}\)
Vậy .................
\(10x^2+3x+1=\left(6x+1\right)\sqrt{x^2+3}\)
Đặt \(\sqrt{x^2+3}=t\left(t\ge\sqrt{3}\right)\)
\(pt\Leftrightarrow10x^2+3x+1-\left(6x+1\right)t=0\)
\(\Leftrightarrow t^2-\left(6x+1\right)t+10x^2+3x+1-x^2-3=0\)
\(\Leftrightarrow t^2-\left(6x+1\right)t+9x^2+3x-2=0\)
\(\Delta=\left(6x+1\right)^2-4\left(9x^2+3x-2\right)=36x^2+12x+1-36x^2-12x+8=9\)
\(\Rightarrow\sqrt{\Delta}=3\)
Dùng công thức nghiệm mà giải,số đẹp r đó