Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\le\frac{5-\sqrt{7}}{6},\frac{5+\sqrt{7}}{6}\le x\)
Ta có: \(8x^4+2=36x^4+9+100x^2+36x^2-60x-120x^3\)
<=> \(28x^4-120x^3+136x^2-60x+7=0\)
<=> \(\left(2x^2-6x+1\right)\left(14x^2-18x+7\right)=0\)
<=> \(\orbr{\begin{cases}2x^2-6x+1=0\\14x^2-18x+7=0\end{cases}}\)
\(TH_1:2x^2-6x+1=0\)
<=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{7}}{2}\left(n\right)\\x=\frac{3-\sqrt{7}}{2}\left(n\right)\end{cases}}\)
\(TH_2:14x^2-18x+7=0\)
<=> \(x\in\Phi\)( Tự c/m)
Vậy \(S=\left\{\frac{3\pm\sqrt{7}}{2}\right\}\)
a)Đk:\(x\ge\frac{1}{2}\)
\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)
Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)
\(t^4-4t^2+4t-1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt
Đặt \(t=6x+1\)và \(h=\sqrt{x^2+3}\)
\(\frac{1}{4}\cdot t^2+h^2-\frac{9}{4}=th\)
\(\Leftrightarrow\left(t-2h\right)^2=9\)
\(\Leftrightarrow t-2h=\pm3\)
Với \(t-2h=3\)ta có
\(6x+1-2\sqrt{x^2+3}=3\)
\(\Leftrightarrow3x-1=\sqrt{x^2+3}\)
\(\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x^2+3=\left(3x+2\right)^2\end{cases}\Leftrightarrow x=\frac{\sqrt{7}-3}{4}}\)
Vậy pt có nghiệm là \(x=1;x=\frac{\sqrt{7}-3}{4}\)
\(10x^2+3x+1=\left(6x+1\right)\sqrt{x^2+3}\)
Đặt \(\sqrt{x^2+3}=t\left(t\ge\sqrt{3}\right)\)
\(pt\Leftrightarrow10x^2+3x+1-\left(6x+1\right)t=0\)
\(\Leftrightarrow t^2-\left(6x+1\right)t+10x^2+3x+1-x^2-3=0\)
\(\Leftrightarrow t^2-\left(6x+1\right)t+9x^2+3x-2=0\)
\(\Delta=\left(6x+1\right)^2-4\left(9x^2+3x-2\right)=36x^2+12x+1-36x^2-12x+8=9\)
\(\Rightarrow\sqrt{\Delta}=3\)
Dùng công thức nghiệm mà giải,số đẹp r đó