Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tương đương với :
\(5^{x-2}-x-1=5^{x^2-x-1}+x^2-x\)
\(\Leftrightarrow5^{x-1}-5\left(x-1\right)=5^{x^2-x}+5\left(x^2-x\right)\)
Xét \(f\left(t\right)=5^t+5t\left(t\in R\right)\)
Dễ thấy \(f\left(t\right)\) luôn đồng biến.
Mặt khác :
\(f\left(x-1\right)=f\left(x^2-x\right)\)
Do đó
\(\left(x-1\right)=\left(x^2-x\right)\)
Từ đó dễ dàng tìm được x=1 là nghiệm duy nhất của phương trình.
Đặt t = 5x, ta có (1)⇔ 1/5.t2 + 5t = 250 ⇔ t2 + 25t - 1250 = 0
⇔ t = 25 hoặc t = -50(loại)
⇔ 5x ⇔ x = 2.
\(5^{1+x^2}-5^{1-x^2}>24\Leftrightarrow5\times5^{x^2}-\frac{5}{5^{x^2}}>24\) (1)
Đặt \(t=5^{x^2}\), dk: \(t>0\)
\(\left(1\right)\Leftrightarrow5t-\frac{5}{t}>24\Leftrightarrow5t^2-24t-5>0\Leftrightarrow\left[\begin{array}{nghiempt}t< \frac{-1}{5}\left(loai\right)\\t>5\end{array}\right.\)\(\Leftrightarrow5^{x^2}>5\Leftrightarrow x^2>1\Leftrightarrow\left[\begin{array}{nghiempt}x< -1\\x>1\end{array}\right.\)
Biến đổi phương trình về dạng :
\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)
Nhận thấy \(x=1\) là nghiệm
Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)
Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.
Đáp số : x=1
a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)
\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)
\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)
\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)
\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)
\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)
\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)
\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)
\(\Rightarrow x=1\)
a) Chia 2 vế của phương trình cho \(5^x>0\), ta có :
\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)
Xét \(f\left(x\right)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x\)
Ta có :
\(f'\left(x\right)=\left(\frac{3}{5}\right)^x\ln\frac{3}{5}+\left(\frac{4}{5}\right)^x\ln\frac{4}{5}<0\) với mọi x
Do đó \(f\left(x\right)\) đồng biến trên R
Mặt khác
f(2) =1. Do đó x=2 là nghiệm duy nhất của phương trình
b) Phương trình tương đương với
\(2^x\left(2-2^x\right)=x-1\)
Với x=1 thì phương trình trên đúng, do đó x=1 là nghiệm của phương trình
- Nếu x>1 thì \(2<2^x\) và \(x-1>0\) do đó \(2^x\left(2-2^x\right)<0\)< \(x-1\)
phương trình vô nghiệm
- Nếu x<1 thì \(2>2^x\) và \(x-1<0\) do đó \(2^x\left(2-2^x\right)>0\)> \(x-1\)
phương trình đã cho có 1 nghiệm duy nhất là x=1
Ta có : \(f\left(x\right)=\frac{1}{2}5^{2x+1}\Rightarrow f'\left(x\right)=5^{2x+1}\ln5\)
\(g\left(x\right)=5^x+4x\ln5\Rightarrow g'\left(x\right)=5^x\ln5+4\ln5=\left(5^x+4\right)\ln5\)
\(f'\left(x\right)< g'\left(x\right)\Leftrightarrow5^{2x+1}\ln5< \left(5^x+4\right)\ln5\)
\(\Leftrightarrow5^{2x+1}< 5^x+4\)
\(\Leftrightarrow5\left(5^x\right)^2-5^x-4< 0\)
\(\Leftrightarrow-\frac{4}{5}< 5^x< 1=5^0\)
\(\Leftrightarrow x< 0\) là nghiệm của bất phương trình
Lấy logarit cơ số 10 hai vế ta có :
\(lg2^{x+2}+lg3^3=lg4^x+lg5^{x-1}\)
\(\Leftrightarrow\left(x+2\right)lg2+xlg3=xlg4+\left(x-1\right)lg5\)
\(\Leftrightarrow x\left(lg4+lg5-lg3-lg2\right)=2lg2+lg5\)
\(\Leftrightarrow x.lg\frac{4.5}{3.2}=lg\left(2^2.5\right)\)
\(\Leftrightarrow x=\frac{lg20}{lg\frac{10}{3}}\)
Vậy nghiệm của phương trình là \(x=\frac{lg20}{lg\frac{10}{3}}\)
\(5^x+5^{1-x}-6=0\)
<=> \(5^x+\frac{5}{5^x}-6=0\)
<=> \((5^x)^2-6.5^x+5=0\)
<=> \(5^x=5 \) hoặc \(5^x=1\)
<=> \(x=1 \) hoặc \(x=log_{5}{1}\)
Vậy phương trình đã cho có nghiệm: \(x=1 \) hoặc \(x=log_{5}{1}\)
\(5^x+5^{1-x}-6=0\Leftrightarrow5^{2x}-6.5+5=0\)
\(\Leftrightarrow\begin{cases}5^x=5\\5^x=1\end{cases}\)
\(\Rightarrow\begin{cases}x=1\\x=0\end{cases}\)