K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

Xét pt hai : \(x^3+y^3=x^2+y^2\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=x^2+y^2\)

\(\Leftrightarrow x^2-xy+y^2=x^2+y^2\Leftrightarrow xy=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\y=0\end{array}\right.\)

Nếu x = 0 thì y = 1

Nếu y = 0 thì x = 1

18 tháng 8 2016

Ta có : \(\begin{cases}x+y=5\\\frac{x}{y}+\frac{y}{x}=1\end{cases}\) \(\Leftrightarrow\begin{cases}x+y=5\\x^2+y^2=xy\end{cases}\)

Từ \(x+y=5\Rightarrow x^2+y^2=5^2-2xy\) thay vào pt còn lại : 

\(25=3xy\Rightarrow xy=\frac{25}{3}\)

Suy ra hệ mới : \(\begin{cases}x+y=5\\xy=\frac{25}{3}\end{cases}\)

Ta đã đưa về hệ pt đối xứng loại I , bạn tự giải nhé :)

15 tháng 1 2020

3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1 \)

<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)

hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường

I thuộc Δ nên I(2-t;3-t)

\(IC=5\)

=>\(\sqrt{\left(6-2+t\right)^2+\left(2-3+t\right)^2}=5\)

=>(t+4)^2+(t-1)^2=25

=>2t^2+6t+17-25=0

=>2t^2+6t-8=0

=>t^2+3t-4=0

=>t=-4 hoặc t=1

=>I(6;7); I(1;2)

=>(x-6)^2+(y-7)^2=25 hoặc (x-1)^2+(y-2)^2=25

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Câu 1: ĐK: $x\geq 1$

Xét PT(1):

\(x^2+xy(2y-1)=2y^3-2y^2-x\)

\(\Leftrightarrow x^2-xy+x+(2xy^2-2y^3+2y^2)=0\)

\(\Leftrightarrow x(x-y+1)+2y^2(x-y+1)=0\)

\(\Leftrightarrow (x-y+1)(x+2y^2)=0\)

\(\Rightarrow \left[\begin{matrix} y=x+1\\ 2y^2=-x\end{matrix}\right.\)

Nếu $y=x+1$, thay vào PT(2):

$\Rightarrow 6\sqrt{x-1}+x+8=4x^2$

$\Leftrightarrow 4(x^2-4)-6(\sqrt{x-1}-1)-(x-2)=0$

\(\Leftrightarrow 4(x-2)(x+2)-6.\frac{x-2}{\sqrt{x-1}+1}-(x-2)=0\)

\(\Leftrightarrow (x-2)\left[4(x+2)-\frac{6}{\sqrt{x-1}+1}-1\right]=0\)

Với mọi $x\geq 1$ dễ thấy:

$4(x+2)\geq 12$

\(\frac{6}{\sqrt{x-1}+1}+1\leq 6+1=7\)

Suy ra biểu thức trong ngoặc vuông lớn hơn $0$

$\Rightarrow x-2=0\Rightarrow x=2$ (thỏa mãn)

$\Rightarrow y=x+1=3$

Nếu $2y^2=-x\Rightarrow -x\geq 0\Rightarrow x\leq 0$ (vô lý do $x\geq 1$)

Vậy $(x,y)=(2,3)$

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Câu 2:

Nếu như bạn nói những bài toán này được giải theo kiểu đưa về phân tích thành nhân tử thì đề bài của bạn có lẽ sai vì không pt nào trong câu này đưa được về dạng tích. Mình thấy PT(1) có lẽ cần sửa lại thành:

\(x\sqrt{x^2+y}+y=\sqrt{x^4+x^3}+x\)

ĐKXĐ: $x\geq 1; y\geq 0$

Với $x\geq 1; y\geq 0$. Xét PT(1):

\(\Leftrightarrow (x\sqrt{x^2+1}-\sqrt{x^4+x^3})+(y-x)=0\)

\(\Leftrightarrow \frac{x^2(x^2+y)-(x^4+x^3)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)

\(\Leftrightarrow \frac{x^2(y-x)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)

\(\Leftrightarrow (y-x)\left[\frac{x^2}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+1\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn dương với mọi $x\geq 1; y\geq 0$ nên $y-x=0\Rightarrow y=x$

Thay vào PT(2):

$x+\sqrt{x}+\sqrt{x-1}+\sqrt{x(x-1)}=\frac{9}{2}$

\(\Leftrightarrow 2x+2\sqrt{x}+2\sqrt{x-1}+2\sqrt{x(x-1)}-9=0\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1})^2+2(\sqrt{x}+\sqrt{x-1})-8=0\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1}-2)(\sqrt{x}+\sqrt{x-1}+4)=0\)

Dễ thấy \(\sqrt{x}+\sqrt{x-1}+4>0\) nên $\sqrt{x}+\sqrt{x-1}=2$

$\Rightarrow 2x-1+2\sqrt{x(x-1)}=4$

$\Leftrightarrow 5-2x=2\sqrt{x(x-1)}$

Tiếp tục bình phương kết hợp với điều kiện $x\leq \frac{5}{2}$ ta tìm được $x=\frac{25}{16}$

Vậy $x=y=\frac{25}{16}$

NV
11 tháng 1 2019

\(\left\{{}\begin{matrix}x^2+y^2=5\\\left(x^2+y^2\right)^2-3x^2y^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\x^2y^2=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y^2=5-x^2\\x^2y^2-4=0\end{matrix}\right.\)

\(\Rightarrow x^2\left(5-x^2\right)-4=0\Leftrightarrow-x^4+5x^2-4=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2=1\Rightarrow y^2=4\\x^2=4\Rightarrow y^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pm1;y=\pm2\\x=\pm2;y=\pm1\end{matrix}\right.\)