Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng 2 pt lại ta được
\(x^2+y^2+2xy-4x-4y=-3\)
\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+3=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x+y-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x+y=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1-y\\x=3-y\end{cases}}\)
THế vào 1 trong 2 pt ban đầu là Ok
pt <=> \(\hept{\begin{cases}x^2-4y^2-8x+4y+15=0\\3x^2+6y^2-6xy=15\end{cases}}\)
\(\hept{\begin{cases}x^2+2y^2-2xy=5\\4x^2+2y^2-6xy-8x+4y=0\end{cases}}\)
\(\hept{\begin{cases}x^2+2y^2-2xy=5\\\left(2x-y\right)\left(x-y-2\right)=0\end{cases}}\)
tới đây bạn giải quyết được rồi nhé
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
Thay vào pt dưới:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)
\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)
TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:
\(\left(-2y-1\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)
TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:
\(\left(-2y-2\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)
\(\left\{{}\begin{matrix}\left(x+2y\right)^2=5+4xy\\\left(x+2y\right)\left(5+4xy\right)=27\end{matrix}\right.\)
\(\Rightarrow\left(x+2y\right)^3=27\Rightarrow x+2y=3\Rightarrow x=3-2y\)
Thay vào pt đầu:
\(\left(3-2y\right)^2+4y^2-5=0\)
\(\Leftrightarrow8y^2-12y+4=0\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=1\\y=\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)