Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\( a)\left\{ \begin{array}{l} x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\ \left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\ x = - \dfrac{{1 + \sqrt 3 - y\sqrt 5 - y\sqrt {15} }}{2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = \dfrac{{ - 1 - \sqrt 3 - \sqrt 5 }}{3}\\ y = - \dfrac{{ - 1 - \sqrt 3 - \sqrt 5 }}{3} \end{array} \right.\\ b)\left\{ \begin{array}{l} 0,2x + 0,1y = 0,3\\ 3x + y = 5 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 0,2x + 0,1y = 0,3\\ y = 5 - 3x \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 2\\ y = - 1 \end{array} \right.\\ c)\left\{ \begin{array}{l} \left( {3x + 2} \right)\left( {2y - 3} \right) = 6xy\\ \left( {4x + 5} \right)\left( {y - 4} \right) = 4xy \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = \dfrac{4}{9}y - \dfrac{2}{3}\\ \left( {4x + 5} \right)\left( {y - 4} \right) = 4xy \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - \dfrac{{50}}{{19}}\\ y = - \dfrac{{84}}{{19}} \end{array} \right. \)
\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)
Ta xét các trường hợp sau:
Trường hợp 1:
\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:
\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)
\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)
Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)
Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:
\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)
Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)
+ Nếu như:
\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)
+ Nếu như:
\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)
Trường hợp 2:
\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:
\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)
Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)
Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)
\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)
Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)
\(\Leftrightarrow2b=1-\frac{1}{a}\)
Thay vào (1) ta được :
\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)
Giải pt được \(a=1\)
Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)
Ta có hệ :
\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
\(x^2-\left(3y+2\right)x+2y^2+4y=0\)
\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y+2-y+2}{2}=y+2\\x=\frac{3y+2+y-2}{2}=2y\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x-2\\2y=x\end{matrix}\right.\)
TH1: \(\) \(y=x-2\)
\(\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\)
\(\Leftrightarrow\left(x^2-5\right)^2=9\Rightarrow\left[{}\begin{matrix}x^2-5=3\\x^2-5=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=8\\x^2=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm2\sqrt{2}\Rightarrow y=-2\pm2\sqrt{2}\\x=\pm\sqrt{2}\Rightarrow y=-2\pm\sqrt{2}\end{matrix}\right.\)
TH2: \(2y=x\)
\(\Leftrightarrow\left(x^2-5\right)^2=2x-x+5\Leftrightarrow\left(x^2-5\right)^2=x+5\)
Đặt \(x^2-5=a\Rightarrow5=x^2-a\) pt trở thành:
\(a^2=x+x^2-a\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-x=0\\a+x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-5=0\\x^2-5+x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Bạnt ự giải nốt
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
\(\left(1\right)\Leftrightarrow x^4\left(x-y\right)+x-y=0\)
\(\Leftrightarrow\left(x^4+1\right)\left(x-y\right)=0\)
\(\Leftrightarrow x-y=0\Rightarrow x=y\)
Thay xuống (2):
\(x^3-3x^3+4x^3-4x^3=54\)
\(\Leftrightarrow-2x^3=54\Rightarrow x^3=-27\)
\(\Rightarrow x=-3\Rightarrow y=-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+4y^2-4xy=2-4xy\\\left(x-2y\right)\left(1-2xy\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)^2=2\left(1-2xy\right)\\\left(x-2y\right)\left(1-2xy\right)=4\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-2y=a\\1-2xy=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=2b\\ab=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2=2b\\a.\frac{a^2}{2}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\frac{a^2}{2}\\a^3=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2y=2\\1-2xy=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2y+2\\1-2y\left(2y+2\right)=2\end{matrix}\right.\) (casio pt dưới)
\(\left\{{}\begin{matrix}\left(x+2y\right)^2=5+4xy\\\left(x+2y\right)\left(5+4xy\right)=27\end{matrix}\right.\)
\(\Rightarrow\left(x+2y\right)^3=27\Rightarrow x+2y=3\Rightarrow x=3-2y\)
Thay vào pt đầu:
\(\left(3-2y\right)^2+4y^2-5=0\)
\(\Leftrightarrow8y^2-12y+4=0\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=1\\y=\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)