K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

\(\hept{\begin{cases}4x^2-16xy+4y^2=4\\y^2-3xy=4\end{cases}}\)

\(\Rightarrow4x^2+3y^2-13xy=0\)

\(\Leftrightarrow\left(y-4x\right)\left(3y-x\right)=0\)

14 tháng 6 2020

 Đó chính  viết tắt cho cụm từ “HNUE Philology Times”. Lấy truyền thông làm mảnh đất hoạt động chính yếu của mình, HPT từ một nhóm bạn nhỏ nay đã trở thành một tập thể gắn kết, nhiệt tình. Tuy ra đời chưa lâu, nhưng HPT đã để lại những dấu ấn rất riêng của mình trong ngôi nhà Văn Khoa

12 tháng 12 2017

\(pt\left(1\right)\Leftrightarrow\dfrac{\left(x-y-4\right)\left(x^2+4x+y^2-4y\right)}{x-y}=0\)

\(x\ne y \rightarrow (x-y-4)(x^2+4x+y^2-4y)=0\)

14 tháng 9 2018

\(\Leftrightarrow\hept{\begin{cases}3\left(x+y\right)^2+\frac{3}{\left(x+y\right)^2}+\left(x-y\right)^2=7\\\left(x+y\right)+\frac{1}{x+y}+\left(x-y\right)=1\end{cases}}\)  

Đặt \(x+y=a>0,x-y=b\) 

\(\Rightarrow\hept{\begin{cases}3a^2+\frac{3}{a^2}+b^2=7\\a+\frac{1}{a}+b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(a^2+\frac{1}{a^2}\right)+b^2=13\\\left(a+\frac{1}{a}\right)+b=1\end{cases}}\) 

\(\Rightarrow3\left(1-b\right)^2+b^2=13\) 

\(\Leftrightarrow4b^2-6a-10=0\) 

\(\Leftrightarrow2\left(b+1\right)\left(2b-5\right)=0\) 

...

NV
14 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}3x\left(2x-y\right)+x+y-1=0\\x^2+y^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x\left(2x-y\right)-\left(2x-y\right)+3x-1=0\\x^2+y^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-1\right)\left(2x-y\right)+3x-1=0\\x^2+y^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-1\right)\left(2x-y+1\right)=0\\x^2+y^2=1\end{matrix}\right.\)

\(\Leftrightarrow...\)

14 tháng 11 2019

làm tiếp giúp mình luôn bạn ơi

NV
16 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}3x\left(2x-y\right)-\left(2x-y\right)+3x-1=0\\x^2+y^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-1\right)\left(2x-y+1\right)=0\\x^2+y^2=1\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}3x-1=0\\x^2+y^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y^2=\frac{8}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=\pm\frac{2\sqrt{2}}{3}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}2x-y+1=0\\x^2+y^2=1\end{matrix}\right.\)

\(\Rightarrow x^2+\left(2x+1\right)^2=1\)

\(\Leftrightarrow5x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{4}{5}\end{matrix}\right.\)

NV
28 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Nguyễn Mai - Toán lớp 9 | Học trực tuyến

NV
18 tháng 2 2020

ĐKXĐ: ...

Nhận thấy \(x=0;y=0\) ko phải nghiệm của hệ

\(\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\left(\frac{x+1}{y}\right)\left(\frac{y+1}{x}\right)=4\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{x}{y+1}=a\\\frac{y}{x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=\frac{1}{2}\\\frac{1}{a}.\frac{1}{b}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=\frac{1}{2}\\ab=\frac{1}{4}\end{matrix}\right.\)

Hệ đơn giản rồi đấy, chắc bạn tự làm tiếp được

NV
18 tháng 2 2020

\(\left\{{}\begin{matrix}\left(a+b\right)^2-2ab=\frac{1}{2}\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2=1\\ab=\frac{1}{4}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a+b=1\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow a=b=\frac{1}{2}\) (sử dụng Viet đảo hoặc phép thế \(a\left(1-a\right)=\frac{1}{4}\) đưa về pt bậc 2 bình thường)

TH2: \(\left\{{}\begin{matrix}a+b=-1\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow a=b=-\frac{1}{2}\)