\(\left(y^2-4y\right)\left(2y-x\right)=2\)

\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

Đặt y2 - 4y =a

    2y - x =b

=>\(\int^{ab=2}_{a+b=3}\Leftrightarrow a;b\)là nghiệm của : X2 - 3X +2 =0 => X =1 ; X=2

+a= 1 ; b= 2 => y2 -4y =1 => \(y=2+\sqrt{5}\) => x= 2y -b =2 +2\(\sqrt{5}\)

                                        ;\(y=2-\sqrt{5}\)=> x =2y - b= 2-2\(\sqrt{5}\)

+a =2 ; b =1 => y2 -4y +4=6 => \(y=2+\sqrt{6}\)=> x=2y-b =3+2\(\sqrt{6}\)

                                              \(y=2-\sqrt{6}\)=> x = 3-2\(\sqrt{6}\)

17 tháng 5 2017

a/ \(\left\{{}\begin{matrix}x+2y=4\\x^2+4y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left(4-2y\right)^2+4y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\4y^2-12y+8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left(y-1\right)\left(y-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left[{}\begin{matrix}y-1=0\\y-2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(2;1\right)\) hoặc \(\left(x;y\right)=\left(0;2\right)\)

24 tháng 8 2017

bài đầu tiên bằng -3

bài thứ hai mình ko biết

25 tháng 8 2017

Dễ =))

NV
23 tháng 5 2019

Câu 1:

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)

\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)

Thay vào pt dưới:

\(\left(y+3\right)^2+y^2=y+3-4y\)

\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)

NV
23 tháng 5 2019

Câu 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)

\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)

TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:

\(\left(-2y-1\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)

TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:

\(\left(-2y-2\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)

23 tháng 8 2018

Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)

Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)

=> hpy vô nghiệm

23 tháng 8 2018

c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)

Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt

\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)

với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)

đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Lời giải

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} x^3-1=y^3+8\\ 3x-3x^2=6y^2+12y\end{matrix}\right.\Rightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow (x-1)^3=(y+2)^3\Leftrightarrow (x-1-y-2)(x^2+y^2+xy+3y+3)=0\)

\(\Rightarrow \)\(\left[\begin{matrix}x=y+3\\x^2+y^2+xy+3y+3=0\end{matrix}\right.\)

Nếu \(x=y+3\) thay vào bất kỳ một trong hai phương trình ban đầu thu được

\(\left[\begin{matrix}y=-1\\y=-2\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Nếu \(x^2+y^2+xy+3y+3=0\)

\(\Leftrightarrow (x+\frac{y}{2})^2+3(\frac{y}{2}+1)^2=0\) \(\Rightarrow\left\{\begin{matrix}x+\frac{y}{2}=0\\\frac{y}{2}+1=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}y=-2\\x=1\end{matrix}\right.\)

Vậy HPT có nghiệm \((x,y)=(2,-1),(1,-2)\)