K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

Ta có: \(\left\{{}\begin{matrix}x^3+y^2=2\\x^2+y^3=2\end{matrix}\right.\) \(\Rightarrow x^3+y^2=x^2+y^3\Leftrightarrow x^3-x^2=y^3-y^2\Leftrightarrow x^2\left(x-1\right)=y^2\left(y-1\right)\)

\(\Rightarrow\) x=y

\(\Rightarrow\)\(x^3+y^2=2\Leftrightarrow x^3+x^2=2\Leftrightarrow x=1\)\(\Rightarrow y=1\)

9 tháng 2 2022

em tưởng trừ 2 vế ra là \(\left(x-1\right)\left(x^2+y^2+xy-x-y\right)=0\)

5 tháng 12 2021

2x + y = 1 <=> y = 1 - 2x

Thế vào pt còn lại thì:

x^2 + (1 - 2x)^2 - x(1 - 2x) = 3

<=> x^2 + 4x^2 - 4x + 1 - x + 2x^2 - 3 = 0

<=> 7x^2 - 5x - 2 = 0

<=> (x - 1)(7x + 2) = 0

<=> x = 1 hoặc x = -2/7

Với x = 1 <=> y = 1 - 2.1 = -1

Với x = -2/7 <=> y = 1 - 2.(-2/7) = 11/7

3 tháng 4 2022

\(\left\{{}\begin{matrix}\sqrt{x^2+3}+2\sqrt{x}=3+\sqrt{y}\left(1\right)\\\sqrt{y^2+3}+2\sqrt{y}=3+\sqrt{x}\left(2\right)\end{matrix}\right.\)\(\left(đk;x;y\ge0\right)\)

\(\left(1\right)-\left(2\right)\Rightarrow\sqrt{x^2+3}+2\sqrt{x}-\sqrt{y^2+3}-2\sqrt{y}=\sqrt{y}-\sqrt{x}\)

\(\Leftrightarrow\sqrt{x^2+3}-\sqrt{y^2+3}+2\sqrt{x}-2\sqrt{y}+\sqrt{x}-\sqrt{y}=0\left(3\right)\)

\(với:x=y=0\Rightarrow ko\) \(là\) \(nghiệm\)

\(vỡi:x=y\ne0\Rightarrow x;y>0\)

\(\left(3\right)\Leftrightarrow\dfrac{x^2+3-y^2-3}{\sqrt{x^2+3}+\sqrt{y^2+3}}+\dfrac{4x-4y}{2\sqrt{x}+2\sqrt{y}}+\dfrac{x-y}{\sqrt{x}+\sqrt{y}}=0\)

\(\Leftrightarrow\left(x-y\right)\left[\dfrac{x+y}{\sqrt{x^2+3}+\sqrt{y^2+3}}+\dfrac{4}{2\sqrt{x}+2\sqrt{y}}+\dfrac{1}{\sqrt{x}+\sqrt{y}}>0\left(\forall x;y>0\right)\right]=0\)

\(\Rightarrow x=y\left(4\right)\)

\(\left(4\right)và\left(1\right)\Rightarrow\sqrt{x^2+3}+2\sqrt{x}=3+\sqrt{x}\Leftrightarrow\sqrt{x^2+3}+\sqrt{x}-3=0\)

\(\Leftrightarrow\sqrt{x^2+3}-2+\sqrt{x}-1=0\Leftrightarrow\dfrac{x^2+3-4}{\sqrt{x^2+3}+2}+\dfrac{x-1}{\sqrt{x}+1}=0\Leftrightarrow\left(x-1\right)\left[\dfrac{x+1}{\sqrt{x^2+3}+2}+\dfrac{1}{\sqrt{x}+1}>0\left(\forall x>1\right)\right]=0\Leftrightarrow x=y=1\)