K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

ĐKXĐ : x > 1

+) Với y < 2/3

hpt trở thành \(\hept{\begin{cases}\frac{2}{\sqrt{x-1}}-\left(3y-2\right)=3\\3\left(3y-2\right)+\frac{1}{\sqrt{x-1}}=-2\end{cases}}\)(1)

Đặt \(\hept{\begin{cases}\frac{1}{\sqrt{x-1}}=a\\3y-2=b\end{cases}}\left(a>0\right)\)(1) trở thành \(\hept{\begin{cases}2a-b=3\\a+3b=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\left(tm\right)\\b=-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-1}}=1\\3y-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\left(tm\right)\\y=\frac{1}{3}\end{cases}}\)

+) Với y ≥ 2/3

hpt trở thành \(\hept{\begin{cases}\frac{2}{\sqrt{x-1}}+\left(3y-2\right)=3\\-3\left(3y-2\right)+\frac{1}{\sqrt{x-1}}=-2\end{cases}}\)(2)

Đặt \(\hept{\begin{cases}\frac{1}{\sqrt{x-1}}=a\\3y-2=b\end{cases}}\left(a>0\right)\)(2) trở thành \(\hept{\begin{cases}2a+b=3\\a-3b=-2\end{cases}}\Rightarrow a=b=1\left(tm\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-1}}=1\\3y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\left(tm\right)\\y=1\end{cases}}\)

Vậy hpt có hai nghiệm \(\hept{\begin{cases}x_1=2\\y_1=\frac{1}{3}\end{cases}}\)\(\hept{\begin{cases}x_2=2\\y_2=1\end{cases}}\)

5 tháng 5 2021

chết chết quên kết luận nghiệm y ;-; bạn viết thêm (tm) hộ mình nhé :v 

NV
8 tháng 2 2022

5.

\(\Delta=\left(-2\right)^2-4\left(-15\right)=64\)

6.

\(\Delta'=2^2-5.\left(-7\right)=39\)

8 tháng 2 2022

Mà thầy ơi em hok hiểu khúc đầu làm sao để ra cái đó ròi ra kết quả á :((( cả 2 câu lun 

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m-3\right)\)

\(=\left(2m-2\right)^2-4\left(m-3\right)\)

\(=4m^2-8m+4-4m+12\)

\(=4m^2-12m+16\)

\(=4m^2-2\cdot2m\cdot3+9+7\)

\(=\left(2m-3\right)^2+7>0\forall x\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m-3\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\2x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=4m-4\\2x_1-3x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x_2=4m-4\\x_1=2m-2-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4m-4}{5}\\x_1=\dfrac{10m-10-4m+4}{5}=\dfrac{6m-6}{5}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-3\)

\(\Leftrightarrow\dfrac{4m-4}{5}\cdot\dfrac{6m-6}{5}=m-3\)

\(\Leftrightarrow\left(4m-4\right)\left(6m-6\right)=25\left(m-3\right)\)

\(\Leftrightarrow24m^2-24m-24m+24=25m-75\)

\(\Leftrightarrow24m^2-48m+24-25m+75=0\)

\(\Leftrightarrow24m^2-73m+99=0\)(1)

\(\Delta=\left(-73\right)^2-4\cdot24\cdot99=-4175< 0\)

Suy ra: Phương trình (1) vô nghiệm

Vậy: Không có giá trị nào của m để phương trình \(x^2-2\left(m-1\right)x+m-3=0\) có hai nghiệm phân biệt thỏa mãn \(2x_1-3x_2=0\)

12 tháng 7 2021

Áp dụng hệ thức lượng trong tam giác vuông ABC : 

\(AB^2=HB\cdot BC\)

\(\Leftrightarrow AB^2=HB\cdot\left(HB+HC\right)\)

\(\Leftrightarrow3^2=HB^2+3.2HB\)

\(\Leftrightarrow HB^2+3.2HB-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HB=1.8\left(N\right)\\HB=-5\left(L\right)\end{matrix}\right.\)

NV
12 tháng 7 2021

Ta có: \(BH+HC=BC\Rightarrow BC=BH+3,2\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\)

\(\Leftrightarrow3^2=BH.\left(BH+3,2\right)\)

\(\Leftrightarrow BH^2+3,2BH-9=0\) (bấm máy phương trình bậc 2: \(x^2+3,2x-9=0\))

\(\Rightarrow\left[{}\begin{matrix}BH=-5< 0\left(loại\right)\\BH=1,8\end{matrix}\right.\)

Vậy \(BH=1,8\left(cm\right)\)

29 tháng 6 2021

1, \(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}.\left(\sqrt{x}+1\right)\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b, Ta có : \(x^2-3x+2=x^2-2x-x+2=x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

TH1 :  Thay x = 1 vào biểu thức P ta được : \(P=\dfrac{1+\sqrt{1}+1}{1}=3\)

TH2 : Thay x = 2 vào biểu thức P ta được : \(P=\dfrac{2+\sqrt{2}+1}{2}=\dfrac{3+\sqrt{2}}{2}\)

 

5 tháng 11 2021

\(a,=\left[\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}-\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right]\left(\sqrt{7}+\sqrt{5}\right)\\ =\left(-\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)=5-7=-2\)

5 tháng 11 2021

oke cam mon bn nhé

 

19 tháng 3 2022

lỗi r bn

19 tháng 3 2022

lx r

31 tháng 12 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)EB tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>BF\(\perp\)FC tại F

=>BF\(\perp\)AC tại F

Xét ΔABC có

BF,CE là các đường cao

BF cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp đường tròn đường kính AH

tâm K là trung điểm của AH

b:

Ta có: OE=OC

=>ΔOEC cân tại O

=>\(\widehat{OEC}=\widehat{OCE}\)

Ta có: ΔKHE cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

 \(\widehat{KEO}=\widehat{KEC}+\widehat{OEC}\)

\(=\widehat{OCE}+\widehat{KHE}\)

\(=\widehat{ECB}+\widehat{DHC}=90^0\)

=>KE là tiếp tuyến của (O)

Xét ΔKEO và ΔKFO có

KE=KF

EO=FO

KO chung

Do đó: ΔKEO=ΔKFO

=>\(\widehat{KEO}=\widehat{KFO}=90^0\)

Ta có: \(\widehat{KEO}=\widehat{KFO}=\widehat{KDO}=90^0\)

=>K,E,O,F,D cùng thuộc đường tròn đường kính KO(ĐPCM)

 

13 tháng 6 2021

*Chữ xấu+Chụp mờ+Viết tắt nhiều đáng lẽ là mình không giải đâu nhưng.....

Bạn tham khảo 2 ý a,b trước 

a)Vì CM,CN là 2 tt của (O,R)

`=>hat{CMO}=hat{CNO}=90^o`

Vì `hat{CMO}=90^o`

`=>M` thuộc đường tròn đường kính OC(1)

Vì `hat{CNO}=90^o`

`=>N` thuộc đường tròn đường kính OC(2)

Xét (O,R) có:

`H` là trung điểm AB

`=>OH bot AB`

`=>hat{CHO}=90^o`

`=>H` thuộc đường tròn đường kính OC(3)

`(1)(2)(3)=>C,M,H,O,N` cùng thuộc đường tròn đường kính OC tức là cùng nằm trên 1 đường tròn

Tam giác CMN là tam giác nội tiếp.

`=>` tâm đường tròn ngoại tiếp `Delta CMN` nằm ở trung điểm OC

Mà `IM=IN`

`=>I` cách đều các cạnh tam giác CMN

`b)` Vì CM=CN(do CM,CN là 2 tt cắt tại C)6

`OM=ON=R`

`=>CO` là trung trực MN

`=>hat{CQN}=90^o`

Vì C,M,H,N cùng thuộc 1 đường tròn

`=>` tg CMHN nt

`=>hat{CHM}=hat{CNM}`

Mà `hat{CNM}+hat{QCN}=90^o(cmt)`

`hat{CON}+hat{QCN}=90^o`

`=>hat{CNM}=hat{CON}`

Mà `hat{CHM}=hat{CNM}`

`=>hat{CON}=hat{CHM}`

Vì C,H,O,N cùng thuộc 1 đường tròn

`=>` tg CHON nt 

`=>hat{CHN}=hat{CON}`

`=>hat{CHM}=hat{CHN}`

`=>HC` là pg `hat{MHN}`