K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

21 tháng 10 2021

 Bạn tham khảo nha:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}=\dfrac{a+2b+c}{2+6+4}=\dfrac{a+2b+c}{12}\)    (1)

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b-c}{2+3-4}=\dfrac{a+b-c}{2+3-4}=\dfrac{a+b-c}{1}\)             (2)

(1)(2)=> \(\dfrac{a+2b+c}{12}=\dfrac{a+b-c}{1}=\dfrac{a+2b-c}{a+b-c}=\dfrac{12}{1}=12\)

         => H = 12.

  Kết quả: Chọn C.

Chúc bạn học tốt :D

6 tháng 2 2017

MNE = MPF

MND =MPD

DME = DMF

7 tháng 2 2017

3. Xét tam giác ADM và tam giác AEM có :

góc ADM = góc AEM = 90 độ

Góc BAM = góc CAM (gt)

AM chung

=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)

=>MD = ME (cặp cạnh t/ứng )

AD = AE (cặp cạnh t/ứng )

Xét tam giác MDB và tam giác MEC có :

MB = MC (gt)

góc MDB = góc MEC = 90 độ

MD = ME ( câu a)

=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)

Vì AD + DB = AB

AE + EC = AC

Mà AD = AE

DB = EC

=>AB = AC

Xét tam giác ABM và tam giác ACM có

AM chung

góc BAM = góc CAM (gt)

AB = AC (CMT)

=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)

Vậy có 3 cặp tam giác bằng nhau


22 tháng 1 2017

a^+b^=c^

a^+b^+c^=180 độ

2a^=3b^

gõ hệ vào máy giải ra dc a^=54 ; b^=36;c^=90

22 tháng 1 2017

mình chỉ bày cách để tính chứ ko phải cách làm đâuhihi

ta có A+B=C.Mà A+B+C=180 độ

Thay C+C=180 độ

=>2C=180 độ

=>c=90 độ hay A+B=90 độ

Ta có 2A=3B=>A/3=B/2=A+B/3+2=90/5=18

=>A=18.3=54

Vậy A=54

17 tháng 3 2017

Đặt \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2015k\\y=2016k\\z=2017k\end{matrix}\right.\)

\(\Rightarrow\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]\)

\(=\left(2015k-2017k\right)^3\div\left[\left(2015k-2016k\right)^2\left(2016k-2017k\right)\right]\)

\(=\left(-2k\right)^3\div\left[-k^2\left(-k\right)\right]\)

\(=-8k^3\div\left(-k\right)^3\)

\(=8\)

Vậy \(\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]=8\)

16 tháng 3 2017

ta có x=9+y

thay x=9+y vào biểu thức B ta có:

B=\(\dfrac{7\left(9+y\right)-9}{6\left(9+y\right)+y}\)+\(\dfrac{7\left(9+y\right)+9}{8\left(9+y\right)-y}\)

B=\(\dfrac{63+7y-9}{54+6y+y}\)+\(\dfrac{63+7y+9}{72+8y-y}\)

B=\(\dfrac{54+7y}{54+7y}\)+\(\dfrac{72+7y}{72+7y}\)

B=1+1

B=2

yeu

17 tháng 3 2017

oaoa

16 tháng 3 2017

Ta có: a=512.46=512.(22)6=512.212=(5.2)12=1012

(=1000000000000)

Vậy số chữ số của a là 12.

17 tháng 3 2017

512.46=512.(22)6 (Lũy thừa của lũy thừa đó bn)

=512.22.6=512.212=(5.2)12=1012

=>1012=1000...000 có 12 số 0 và 1 số 1 nên số nay có 13 chữ số

Thanks!

17 tháng 3 2017

Ta có: x và y là 2 đl tlt nên \(\dfrac {x1}{y1} \)=\(\dfrac{x2}{y2}\) .

Thay số: \(\dfrac {6}{y1} \)=\(\dfrac{-9}{y2}\)=\(\dfrac{6-(-9)}{y1-y2}\)=\(\dfrac{15}{10} \)=1,5

=>y1=\(\dfrac{6}{1,5} \)= 4; y2=\(\dfrac{-9}{1,5} \)= -6

Vậy y1+y2=4+(-6)=-2

16 tháng 3 2017

Ta đánh giá phương trình ở đề bài:

Dễ thấy (x-3y)2, (y-1)2, (x+z)2 đều lớn hơn hoặc bằng 0 với mọi giá trị của biến. Do vậy tổng của chúng bằng 0 khi và chỉ khi:\(\left\{{}\begin{matrix}\left(x-3y\right)^2=0\\\left(y-1\right)^2=0\\\left(x+z\right)^2=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3y\\y=1\\x=-z\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\y=1\\z=-3\end{matrix}\right.\)

=>A=3x+2y+z=3.3+2.1-3=8

16 tháng 3 2017

ta có:(x-3y)2>=0

(y+1)2>=0

(x+z)2>=0

=>\(\begin{matrix}\left(x-3y\right)^2=0&=>x-3y=0&=>x=3y&=>x=3&\\\left(y-1\right)^2=0&=>y-1=0&=>y=1&=>y=1&\\\left(x+z\right)^2=0&=>x+z=0&=>z=-x&=>z=-3&\end{matrix}\)

thay x,y,z vào biểu thức A ta có:

A=3.3+2.1+(-3)

A=3+2-3

A=2ok

17 tháng 3 2017

Ta thấy f(x)=10x=x\(^2\)

\(\Rightarrow\)x=10