Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:
\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)
Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)
2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
a) Phương trình hoành độ giao điểm là:
\(x^2=\left(m+2\right)x-2m\)
\(\Leftrightarrow x^2-\left(m+2\right)x+2m=0\)
\(\Delta=\left(m+2\right)^2-8m=m^2+4m+4-8m=m^2-4m+4=\left(m-2\right)^2\)
Để (d) và (P) cắt nhau tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\)
mà \(\left(m-2\right)^2\ge0\)
nên \(m-2\ne0\)
hay \(m\ne2\)
Vậy: Để (d) và (P) cắt nhau tại hai điểm phân biệt thì \(m\ne2\)
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow3\sqrt{x}=\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+3\right)\)
\(\Leftrightarrow4x+\sqrt{x}-3=0\)
\(\Leftrightarrow4x+4\sqrt{x}-3\sqrt{x}-3=0\)
\(\Leftrightarrow4\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(4\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow4\sqrt{x}-3=0\)
\(\Leftrightarrow x=\dfrac{9}{16}\)
Ta có: \(\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=2\sqrt{x}-1\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+3\right)=3\sqrt{x}\)
\(\Leftrightarrow4x+6\sqrt{x}-2\sqrt{x}-3-3\sqrt{x}=0\)
\(\Leftrightarrow4x+\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(4\sqrt{x}-3\right)=0\)
\(\Leftrightarrow4\sqrt{x}-3=0\)
hay \(x=\dfrac{9}{16}\)
Bài 2:
a) \(\Leftrightarrow\left|x-3\right|=9\\ \Leftrightarrow\left[{}\begin{matrix}x-3=-3\\x-3=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) ĐKXĐ: \(x\ge-5\)
\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\\ \Leftrightarrow2\sqrt{x+5}=4\\ \Leftrightarrow\sqrt{x+5}=2\\ \Leftrightarrow x+5=4\\ \Leftrightarrow x=1\left(tm\right)\)
c) ĐKXĐ: \(x\ge3\)
b) \(\Leftrightarrow x-3-2\sqrt{x-3}+1=1\\ \Leftrightarrow\left(\sqrt{x-3}+1\right)^2=1\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}+1=1\\\sqrt{x-3}+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x-3}=-2\left(vôlí\right)\end{matrix}\right.\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\left(tm\right)\)
\(=\dfrac{x-4-x+2\sqrt{x}-3-3\sqrt{3}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}-3\sqrt{3}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
a: góc ASB=1/2*180=90 độ=góc ABM
b: ON vuông góc AS
BS vuông góc SA
=>ON//BS
c: góc OIM+góc OBM=180 độ
=>OIMB nội tiếp
Lời giải:
Theo hình minh họa thì:
Chiều cao tòa nhà $=\tan 35^0.30\approx 21$ (m)
Chữ mờ quá. Bạn nên gõ đề bằng công thức toán để được hỗ trợ tốt hơn.
Bài 5.
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)(đk: \(x\ge0,x\ne1\))
\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right].\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\sqrt{x}+1}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)
Nếu \(0< x< 1\)thì \(0< \sqrt{x}< 1\Rightarrow x< \sqrt{x}\Leftrightarrow\sqrt{x}-x>0\)
Suy ra \(P>0\).
\(P=-x+\sqrt{x}=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu \(=\)khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\).