K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15:

a: \(\text{Δ}=\left(m^2-m+2\right)^2-4m^2\)

=(m^2-m+2-2m)(m^2-m+2+2m)

=(m^2+m+2)(m^2-3m+2)

=(m-1)(m-2)(m^2+m+2)

Để phương trình co hai nghiệm phân biệt thì (m-1)(m-2)(m^2+m+2)>0

=>(m-1)(m-2)>0

=>m>2 hoặc m<1

b: x1+x2=m^2-m+2>0 với mọi m

x1*x2=m^2>0 vơi mọi m

=>Phương trình luôn có hai nghiệm dương phân biệt

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Lời giải:

Từ ĐKĐB suy ra:

$-x^2+5xy+2y^2=3(x^2+y^2)$

$\Leftrightarrow 4x^2-5xy+y^2=0$
$\Leftrightarrow 4x(x-y)-y(x-y)=0$

$\Leftrightarrow (4x-y)(x-y)=0$

$\Rightarrow 4x=y$ hoặc $x=y$.

Nếu $4x=y$. Thay vô PT $(1)$ thì:

$x^2+(4x)^2=1\Rightarrow x=\pm \frac{1}{\sqrt{17}}$

$\Rightarrow x=\pm \frac{4}{\sqrt{17}}$ (tương ứng)

Trường hợp $x=y$ tương tự, ta tìm được $(x,y)=(\pm \frac{1}{\sqrt{2}}; \pm \frac{1}{\sqrt{2}})$

 

 

NV
2 tháng 12 2021

\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)

Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)

Thế vào \(x_1x_2=3m+1\)

\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)

\(\Rightarrow m=2\) (thỏa mãn)

Câu 3: 

Gọi thời gian hai vòi 1 và 2 chảy một mình đầy bể lần lượt là x,y

Trong 1 giờ, vòi 1 chảy được: 1/x(bể)

Trong 1 giờ, vòi 2 chảy được: 1/y(bể)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{1}{x}=\dfrac{1}{5}-\dfrac{1}{15}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{15}{2}\\y=15\end{matrix}\right.\)

14 tháng 6 2021

\(A=\dfrac{2\sqrt{x}+17}{\sqrt{x+5}}=\dfrac{2\sqrt{x}+10}{\sqrt{x}+5}+\dfrac{7}{\sqrt{x}+5}=2+\dfrac{7}{\sqrt{x}+5}\) 

Để \(A\) ∈ \(Z\) thì \(\dfrac{7}{\sqrt{x}+5}\) phải ∈ \(Z\)

=> \(\sqrt{x}+5\) ∈ \(Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

# Với \(\sqrt{x}+5=-7=>\sqrt{x}=-12\)(Loại)

#Với \(\sqrt{x}+5=-1=>\sqrt{x}=-6\)(Loại)

#Với \(\sqrt{x}+5=1=>\sqrt{x}=-4\left(Loại\right)\)

#Với \(\sqrt{x}+5=7=>\sqrt{x}=2< =>x=4\left(Nhận\right)\)

Vậy \(x=4\) thì \(A\)\(Z\)

28 tháng 9 2021

\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}3\)

\(Ta\) \(Có\) : \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}=\sqrt[3]{\dfrac{a^6}{ab.ab\left(a^2-ab+b^2\right)}}=\dfrac{a^2}{\sqrt[3]{ab.ab.\left(a^2-ab+b^2\right)}}\) 

\(Áp\) \(dụng\) \(bđt\) \(AM-GM\) 

\(\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}\text{≤}\)  \(\dfrac{ab+ab+a^2-ab+b^2}{3}\) 

\(=>\dfrac{a^2}{\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}}\) \(\text{≥}\) \(\dfrac{3a^2}{a^2+ab+b^2}\) \(Hay\) \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}\text{≥}\dfrac{3a^2}{a^2+ab+b^2}\)

Tương tự ta cũng có : 

\(\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\text{≥}\dfrac{3b^2}{b^2+bc+c^2}\) 

\(\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+a^2\right)}}\text{≥}\dfrac{3c^2}{a^2+ac+c^2}\)

\(=>\text{​​}\text{​​}\)\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\)  \(\text{≥}\) \(3\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) 

Cần c/m \(\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) ≥ \(1\) 

Ta có : \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\) 

\(< =>3a^2\text{≥}a^2+ab+b^2\) \(< =>2a^2-b\left(a+b\right)\text{≥}0\) (1)

Lại có : \(a^2\text{≥}-b\left(a+b\right)\) (2)

Từ (1) và (2) => \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\)

Tương tự ta cũng có :

 \(\dfrac{b^2}{b^2+bc+c^2}\text{≥}\dfrac{1}{3}\) 

\(\dfrac{c^2}{a^2+ac+c^2}\text{≥}\dfrac{1}{3}\)

Do đó \(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\text{≥}1\)

Suy ra :  \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}\) \(3\) 

Đẳng thức xảy ra <=> \(a=b=c=1\)

 

 

 

13 tháng 9 2018

không khó quá.

13 tháng 9 2018

giải giúp mik cái

22 tháng 8 2021

c, \(C=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)

<=> \(C=\left(2\sqrt{3}-15\sqrt{3}+8\sqrt{3}\right):\sqrt{3}\)

<=> \(C=-5\sqrt{3}:\sqrt{3}=-5\)

e. \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

\(=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=6+2\sqrt{9-5}\)

\(=6+4=10\)

b. \(\left(\sqrt{3}+2\right)^2-\sqrt{75}\)

\(=3+4\sqrt{3}+4-5\sqrt{3}\)

\(=7-\sqrt{3}\)

d. \(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)

\(=\left(1+\sqrt{3}\right)^2-2\)

\(=1+2\sqrt{3}+3-2\)

\(=2+2\sqrt{3}\)

f. \(\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-2+\sqrt{3}\)

\(=2\sqrt{3}\)

c: Ta có: \(C=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)

\(=\left(2\sqrt{3}-5\cdot3\sqrt{3}+4\cdot2\sqrt{3}\right):\sqrt{3}\)

\(=2-15+8=-5\)

d: Ta có: \(D=\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

\(=3-\sqrt{5}+3+\sqrt{5}+2\cdot\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=6+2\cdot2=10\)

23 tháng 9 2021

Xét tam giác ABH vuông tại H có:

\(sinB=\dfrac{AH}{AB}=0,5\Rightarrow AB=\dfrac{AH}{0,5}=\dfrac{5}{0,5}=10\)

Xét tam giác ABH vuông tại H có:

\(AB^2=AH^2+BH^2\left(Pytago\right)\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{10^2-5^2}=5\sqrt{3}\)