Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
a: Xét ΔBAH và ΔBDH có
BA=BD
AH=DH
BH chung
=>ΔBAH=ΔBDH
b: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>DA=AE
c: Xét ΔAEM vuông tại A và ΔDEC vuông tại D có
EA=ED
góc AEM=góc DEC
=>ΔAEM=ΔDEC
=>EM=EC>ED
d: Xet ΔADF có HE//DF
nên HE/DF=AH/AD=1/2
Xét ΔKHE và ΔKFD có
góc KHE=góc KFD
góc HKE=góc FKD
=>ΔKHE đồng dạng vơi ΔKFD
=>KE/KD=HE/FD=1/2
=>KD=2KE
Câu 9 cần bs điều kiện $x,y,z\neq 0$
$\frac{x}{3}=\frac{y}{4}\Rightarrow \frac{x}{15}=\frac{y}{20}$
$\frac{y}{5}=\frac{z}{6}\Rightarrow \frac{y}{20}=\frac{z}{24}$
$\Rightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{24}$ và đặt $=t$ (đk: $t\neq 0$)
$\Rightarrow x=15t; y=20t; z=24t$
Khi đó:
$M=\frac{2.15t+3.20t+4.24t}{3.15t+4.20t+5.24t}=\frac{186t}{245t}=\frac{186}{245}$
Đáp án B.
Câu 10:
Giả sử số $A$ được chia thành 3 phần $a,b,c$ sao cho
$a:b:c=\frac{2}{5}: \frac{3}{4}: \frac{1}{6}$
Đặt $a=\frac{2}{5}t; b=\frac{3}{4}t; c=\frac{1}{6}t$
$A=a+b+c=\frac{2}{5}t+\frac{3}{4}t+\frac{1}{6}t=\frac{79}{60}t$
Có:
$a^2+b^2+c^2=(\frac{2}{5}t)^2+(\frac{3}{4}t)^2+(\frac{1}{6}t)^2=24309$
$t^2=32400$
$t=\pm 180$
$\Rightarrow A=\frac{79}{60}t=\frac{79}{60}\pm 180=\pm 237$
Đáp án D.
\(a,\left\{{}\begin{matrix}AC=AD\\\widehat{ACE}=\widehat{DCE}\left(CE.là.p/g\right)\\CE.chung\end{matrix}\right.\Rightarrow\Delta ACE=\Delta DCE\left(c.g.c\right)\\ \Rightarrow AE=ED\\ b,\Delta ACE=\Delta DCE\Rightarrow\widehat{BAC}=\widehat{CED}=90^0\\ \Rightarrow BC\perp DE\\ \Rightarrow\widehat{BED}+\widehat{B}=90^0\)
Mà \(\widehat{ACB}+\widehat{B}=90^0\left(\Delta ABC\perp A\right)\)
Vậy \(\widehat{BED}=\widehat{ACB}\)
\(c,\) Gọi giao của phân giác \(\widehat{BED}\) và BC là F
\(\Rightarrow\widehat{FED}=\dfrac{1}{2}\widehat{BED}\)
Lại có \(\Delta ACE=\Delta DCE\Rightarrow\widehat{AEC}=\widehat{CED}\)
Mà \(\widehat{AEC}+\widehat{CED}=\widehat{AED}\Rightarrow\widehat{CED}=\dfrac{1}{2}\widehat{AED}\)
Ta có \(\widehat{CEF}=\widehat{CED}+\widehat{FED}=\dfrac{1}{2}\left(\widehat{AED}+\widehat{DEB}\right)\)
Mà \(\widehat{AED}+\widehat{DEB}=180^0\)
Do đó \(\widehat{CEF}=90^0\Rightarrow CE\perp EF\)
Suy ra cái đề
3:
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trực của CK
=>AE vuông góc CK
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
mà EK là đường cao
nên KA=KB
c: EB=EA
EA>AC
=>EB>AC
d: Gọi giao của BD và AC là M
Xét ΔAMB có
AD,BC là đường cao
AD cắt BC tại E
=>E là trực tâm
=>ME vuông góc BC
=>M,E,K thẳng hàng
=>ĐPCM
Bài 4:
Ta có: \(A=x^2+4x+y^2-5y+20\)
\(=x^2+4x+4+y^2-5y+\dfrac{25}{4}+\dfrac{39}{4}\)
\(=\left(x+2\right)^2+\left(y-\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}\forall x,y\)
Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{5}{2}\)
\(\dfrac{5}{7}+\dfrac{2}{3}x=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{2}{3}x=\dfrac{3}{10}-\dfrac{5}{7}\)
\(\Rightarrow\dfrac{2}{3}x=-\dfrac{29}{70}\)
\(\Rightarrow x=-\dfrac{29}{70}:\dfrac{2}{3}\)
\(\Rightarrow x=-\dfrac{87}{140}\)
\(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
\(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
3:
2: TH1: p=3k+1
A=(p-1)(p+1)=3k(3k+2) chia hết cho 3
p-1 chẵn; p+1 chẵn
=>A chia hết cho 8
=>A chia hết cho 24
TH2: p=3k+2
=>A=(3k-1)(3k+3) chia hết cho 3
=>A chia hết cho 24
1: =>(2x-1)^2=9 và |y-3|=5
=>x thuộc {2;-1} và y thuộc {8;-2}