Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: Ta có: \(\left(1-4x\right)\left(x-1\right)+\left(2x+1\right)\left(2x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4x^2+6x+2x+3=38\)
\(\Leftrightarrow13x=36\)
hay \(x=\dfrac{36}{13}\)
b: Ta có: \(\left(2x+3\right)\left(x+2\right)-\left(x-4\right)\left(2x-1\right)=75\)
\(\Leftrightarrow2x^2+4x+3x+6-2x^2+x+8x-4=75\)
\(\Leftrightarrow15x=73\)
hay \(x=\dfrac{73}{15}\)
6.
a, ĐK: \(x\ne2;x\ne3\)
\(P=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}-\dfrac{2x+1}{3-x}\)
\(=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\dfrac{2x^2-3x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-x^2+9+2x^2-3x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
Nó có khó đâu
a)
Có \(\widehat{ARQ}=\widehat{ADC}=50dộ\)
Mà 2 góc này lại là 2 góc đồng vị
\(\Rightarrow\) RQ // CD
Có \(\widehat{BAD}+\widehat{ARQ}=180độ\)
⇒ AB // RQ ( 2 góc TCP)
RQ//CD (cmt), AB//RQ(cmt)
⇒ AB // CD
⇒ ABCD là hình thang
Hình thang ABCD có
R là trung điểm AD (gt) (1)
AB // RQ // CD (cmt)
⇒ Q là trung điểm BC (2) ( đường tthẳng đi qua trung điểm 1 cạnh bên của hình thang và song song với 2 đáy thì đi qua trung điểm cạnh bên thứ 2 )
Từ (1) và (2) suy ra RQ là đường trung bình của hình thang ABCD
⇒ RQ = 1/2 (AB+CD)
⇒ CD = 14 cm
GIẢI PHƯƠNG TRÌNH :
\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)
giải hộ e vs ạ !!!
e cảm ơn nhìu :3
(3x + 5)2 - (2x + 1)2 = 0
<=> (3x + 5 + 2x + 1)(3x + 5 - 2x - 1) = 0
<=> (5x + 6)(x + 4) = 0
<=> \(\orbr{\begin{cases}x=-\frac{6}{5}\\x=-4\end{cases}}\)
Vậy \(x\in\left\{-\frac{6}{5};-4\right\}\)là nghiệm phương trình
\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(3x+5+2x+1\right)\left(3x+5-2x-1\right)=0\)
\(\Leftrightarrow\left(5x+6\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=-\frac{6}{5}\)
Vậy tập nghiệm của phương trình là S = { -4 ; -6/5 }
Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)= \(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)= \(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
=> 4 = 1 + DC
=> DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có:
\(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
\(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)= \(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm
Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có:
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm
1
Trong tam giác abc , có
nb = nc ( gt)
mb = ma ( gt )
=> mn là đường trung bình của tam giác abc
=> nm // pa (1)
Trong tam giác abc , có :
nb = nc ( gt )
pc = pa ( gt)
=> pn là đường trung bình của tam giác abc
=> pn // am (2)
Từ 1 và 2 => apnm là hình bình hành
Mà góc a = 90 độ
=> pnma là hcn
Bạn cần gấp lắm không , nếu gấp thì mk làm luôn , nếu không thì tầm 9 giời mk giải cho , mk giải hình cho mấy cậu kia đánh mỏi tay quá rồi , nếu gấp thì bảo nhá mk làm luôn cho
Mai mình ktra 1 tiết rồi huhu giải hộ mình câu 4 với cảm ơn bn nhìu