Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\sqrt{27}-\sqrt{75}-\sqrt{\frac{4}{3}}\)\(=2\sqrt{9.3}-\sqrt{25.3}-\sqrt{\frac{4.3}{9}}\)\(=2.3\sqrt{3}-5\sqrt{3}-\frac{2}{3}\sqrt{3}\)\(=6\sqrt{3}-5\sqrt{3}-\frac{2}{3}\sqrt{3}\)\(=\frac{1}{3}\sqrt{3}\)\(=\frac{\sqrt{3}}{3}\)
\(\Rightarrow\sqrt{5+\sqrt{x-1}}=6-x\left(x\le6\right)\)
\(\Rightarrow5+\sqrt{x-1}=36-12x+x^2\)
\(\Rightarrow x-1+\sqrt{x-1}-x^2+11x-30=0\)
Đặt \(a=\sqrt{x-1}\left(a\ge0\right)\)
\(\Rightarrow a^2+a-x^2+11x-30=0\)
Có \(\Delta=1+4x^2-44x+120=\left(2x-11\right)^2\)
\(\Rightarrow a=x-6\) hoặc \(a=5-x\)
Tới đêy thì tự giải nhá ^^
ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)
Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))
Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)
Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
+) Với \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)
+) Với \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)
Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)
Tìm GTLN: \(A=\sqrt{3}-\sqrt{x-1}.\)
Điều kiện: x>=0
Ta có: \(\sqrt{x-1}\ge0\forall x\ge0\Rightarrow-\sqrt{x-1}\le0\Rightarrow\sqrt{3}-\sqrt{x-1}\le\sqrt{3}\)
Nên GTLN của A bằng \(\sqrt{3}\)khi x=0.
điều kiện x - 1 >= 0 => x >= 1
ta có : \(\sqrt{x-1}\ge0.\)với mọi x >=1
=> \(\sqrt{3}-\sqrt{x-1}\le\sqrt{3}\)
Vậy Giá trị lớn nhất \(\sqrt{3}-\sqrt{x-1}=\sqrt{3}\)tại x = 1
\(\sqrt{3}\left(\sqrt{27}-\sqrt{2}+1\right)+\sqrt{6}\)
\(=\sqrt{81}-\sqrt{6}+\sqrt{3}+\sqrt{6}\)
\(=9+\sqrt{3}\)