Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^3-3x^2y-4x^2+4y^3+16xy=16y^2\Leftrightarrow x^3-3x^2y-4x^2+4y^3+16xy-16y^2=0\)
đưa về phương trình tích : \(\left(x-2y\right)^2\left(x+y-4\right)=0\) tới đây ok chưa
3) ĐK : x \(\ge\)0 ; \(y\ge3\)\(\Rightarrow x+y>0\)
đặt \(\sqrt{x+y}=a;\sqrt{x+3}=b\)
\(\Rightarrow y-3=\left(x+y\right)-\left(x+3\right)=a^2-b^2\)
PT : \(\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\Leftrightarrow3\sqrt{x+y}+3\sqrt{x+3}=y-3\)
\(\Leftrightarrow3\left(a+b\right)=a^2-b^2\Leftrightarrow\left(a+b\right)\left(3-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}a+b=0\\a-b=3\end{cases}}\)
Mà a + b = \(\sqrt{x+y}+\sqrt{x+3}>0\)nên loại
a - b = 3 thì \(\sqrt{x+y}-\sqrt{x+3}=3\), ta có HPT : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x+3}=3\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)
\(\Rightarrow\)\(\sqrt{x}+\sqrt{x+3}=x\Leftrightarrow\sqrt{x+3}=x-\sqrt{x}\Leftrightarrow x^2-2x\sqrt{x}-3=0\Leftrightarrow x=\left(1+\sqrt[3]{2}\right)^2\)
từ đó tìm đc y
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
đk: \(x+2y\ge0\)
\(x+2y=\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{\left(x+y\right)^2}{3}+y^2}\ge\sqrt{\frac{\left(x+2y\right)^2}{4}}+\sqrt{\frac{\left(x+2y\right)^2}{4}}=x+2y\)
\(\Rightarrow\)\(x=2y\)\(\Rightarrow\)\(x=3-y=3-\frac{x}{2}\)\(\Rightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{x}{2}=1\end{cases}}\)
\(\hept{\begin{cases}x+4y=6\sqrt{2}\\x+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=-3+6\sqrt{2}\\x+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x+\left(-1+2\sqrt{2}\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x=4-2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4-2\sqrt{2}\\y=-1+2\sqrt{2}\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}2x+y=5\\4x+6y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\\4x+6y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4y=0\\2x+y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\2x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\x=\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=0\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}x+2y=\sqrt{3}\\3x+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=2\sqrt{3}\\3x+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\3.\left(1-2\sqrt{3}\right)+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\y=\frac{-1+3\sqrt{3}}{2}\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}4x-9y=9\\22x+6y=31\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}44x-99y=99\\44x+12y=62\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}111y=-37\\4x-9y=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\4x-9.\left(\frac{-1}{3}\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{3}\end{cases}}\)
Vậy HPT có nghiệm.....
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y
Ta có:
\(x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\Leftrightarrow\left(x-y\right)-2\left(y+1\right)+\sqrt{\left(x-y\right)\left(y+1\right)}=0\)
Xét y=-1 thay vào tìm x
Xét y khác -1
\(pt\Leftrightarrow\frac{x-y}{y+1}-2+\sqrt{\frac{x-y}{y+1}}=0\) (2)
Đặt \(\sqrt{\frac{x-y}{y+1}}=a\left(a\ge0\right)\)
pt(2) trở thành
\(a^2+a-2=0\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)
Làm r nhưng mà làm lại hjhjhj
\(\hept{\begin{cases}x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\left(1\right)\\3\sqrt{8-x}-\frac{4y}{\sqrt{y+1}+1}=x^2-14y-8\left(2\right)\end{cases}}\)
\(ĐK:\hept{\begin{cases}y\left(x-y-1\right)+x\ge0\\x\le8\\y\ge-1\end{cases}}\)
\(\left(1\right)\Leftrightarrow\sqrt{y\left(x-y-1\right)+x}=-\left(x-3y-2\right)\)\(\Leftrightarrow\sqrt{xy-y^2-y+x}=-\left(x-3y-2\right)\)
\(\Leftrightarrow-\sqrt{\left(x-y\right)\left(y+1\right)}=x-3y-2\)\(\Leftrightarrow-\sqrt{\left(x-y\right)\left(y+1\right)}=\left(x-y\right)-2\left(y+1\right)\)
\(\Leftrightarrow\left(x-y\right)-2\left(y+1\right)+\sqrt{\left(x-y\right)\left(y+1\right)}=0\)(*)
* Với y = -1 thì từ (*) suy ra x = -1
Thay nghiệm \(\left(x,y\right)=\left(-1,-1\right)\)vào (2) thì ta thấy không đúng
* Với \(y\ne-1\)thì chia hai vế của phương trình (*) cho y + 1, ta được: \(\left(\frac{x-y}{y+1}\right)-2+\sqrt{\frac{x-y}{y+1}}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\frac{x-y}{y+1}}=1\left(tm\right)\\\sqrt{\frac{x-y}{y+1}}=-2\left(ktm\right)\end{cases}}\Leftrightarrow x-y=y+1\Leftrightarrow y=\frac{x-1}{2}\)
Khi đó \(\left(2\right)\Leftrightarrow3\sqrt{8-x}-\frac{4.\frac{x-1}{2}}{\sqrt{\frac{x-1}{2}+1}+1}=x^2-14.\frac{x-1}{2}-8\)
\(\Leftrightarrow3\sqrt{8-x}-\frac{2\left(x-1\right)}{\sqrt{\frac{x-1}{2}+1}+1}-x^2+7x+1=0\)
Đặt \(f\left(x\right)=3\sqrt{8-x}-\frac{2\left(x-1\right)}{\sqrt{\frac{x-1}{2}+1}+1}-x^2+7x+1\)
Ta có: \(f\left(-1\right)=6;f\left(8\right)=-3-6\sqrt{2}\Rightarrow f\left(-1\right).f\left(8\right)=-18-36\sqrt{2}< 0\)
\(\Rightarrow f\left(x\right)\)có ít nhất một nghiệm trên đoạn \(\left[-1;8\right]\)
Lại có f(7) = 0 \(\Rightarrow\)x = 7 là nghiệm của f(x) \(\Rightarrow y=3\)
Vậy hệ phương trình có 1 nghiệm \(\left(x,y\right)=\left(7,3\right)\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.