Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi HPT trên là (1)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{x+y}{xy}=\dfrac{9}{2}\\xy+\dfrac{1}{xy}=\dfrac{5}{2}\end{matrix}\right.\)
Đặt x+y=a;xy=b(b#0).HPT trở thành:
\(\left\{{}\begin{matrix}a+\dfrac{a}{b}=\dfrac{9}{2}\left(!\right)\\b+\dfrac{1}{b}=\dfrac{5}{2}\left(!!\right)\end{matrix}\right.\)
Giải PT (!!) ta được \(b_1=2;b=\dfrac{1}{2}\)
TH1: Với b=2 thay vào (!)=>a=3
=> x+y=3 và xy=2 => x=2;y=1.
TH2: Với b=1/2 thay vào (!)=> a=3/2
=> x+y=3/2 và xy=1/2 => x=1 và y=1/2.
Vậy \(\left(x;y\right)=\left\{\left(2;1\right);\left(1;\dfrac{1}{2}\right)\right\}\)
<=>\(\left\{{}\begin{matrix}\left(x+\dfrac{1}{y}\right)^2-\dfrac{2x}{y}+\dfrac{x}{y}=3\left(1\right)\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\left(2\right)\end{matrix}\right.\)
cộng vế với vế của (1) và (2) ta được :
(x+\(\dfrac{1}{y}\))2 +( 1+\(\dfrac{1}{y}\)) = 6
(x +\(\dfrac{1}{y}\))2 +(1+\(\dfrac{1}{y}\)) - 6 = 0
đặt t =x +\(\dfrac{1}{y}\) rồi giải phương trình bậc 2 theo t . tìm ra t thế x theo y vào hệ đã cho ta tìm được x và y .< trước khi làm bài này phải có ĐK y#0>
a: \(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+4z=8\\2x-y+3z=6\\2x-6y+8z=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y+z=2\\8y-4z=1\\x+y+2z=4\end{matrix}\right.\)
=>y=9/20; z=13/20; x=4-y-2z=9/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}z=23-x-y\\z=31-y-t\\z=27-t-x\\x+y+t=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-y+23=-y-t+31\\-y-t-31=-x-t+27\\x+y+t=33\\z=23-x-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+t=8\\x-y=58\\x+y+t=33\\z=23-x-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x+8\\y=x-58\\x-58+x+8+x=33\\z=23-x-y\end{matrix}\right.\)
=>x=83/3; t=107/3; y=-91/3; z=23-83/3+91/3=77/3
hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )
Cộng từng vế của các pt lại với nhau , ta có :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)
\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)
\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)