K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=\frac{1}{5}\left(1\right)\\8x^2+6x+6xy+2y=\frac{114}{25}\end{cases}}\)

\(\Leftrightarrow9x^2+6x+6xy+2y+y^2+1=\frac{114}{25}+\frac{1}{5}+1\)

\(\Leftrightarrow\left(3x\right)^2+6x\left(y+1\right)+\left(y+1\right)^2=\frac{144}{25}\)\(\Leftrightarrow\left(3x+y+1\right)^2=\frac{144}{25}\)

=>\(\hept{\begin{cases}3x+y+1=\frac{12}{5}\\3x+y+1=-\frac{12}{5}\end{cases}}\)\(\hept{\begin{cases}3x+y=\frac{7}{5}\\3x+y=-\frac{17}{5}\end{cases}}\)\(\hept{\begin{cases}y=\frac{7}{5}-3x\left(2\right)\\y=-\frac{17}{5}-3x\left(3\right)\end{cases}}\)

Thay (2) vào (1) ta có:\(x^2+\left(\frac{7}{5}-3x\right)^2=\frac{1}{5}\)\(\Rightarrow x^2+\frac{49}{25}-8,4x+9x^2-\frac{1}{5}=0\)\(\Rightarrow\hept{\begin{cases}x=\frac{11}{25}\\x=0,4\end{cases}\Rightarrow\hept{\begin{cases}y=5,68\\y=6,6\end{cases}}}\)

Thay (3) vào (1) ta giải được (LƯỜI GIẢI) sorry nha :))

P/s:Chỉ khó lúc biến đổi đầu thôi, còn lại bạn tự giải nha

26 tháng 8 2019

Ai cha!!! Giải y sai rồi lúc cuối sửa lại dùm mình:: \(\hept{\begin{cases}y=\frac{2}{25}\\y=0,4\end{cases}}\)

Vậy đó, mình thích biến đổi hơn, Giải mấy cái dễ thì hay sai linh tinh lắm

17 tháng 6 2019

ĐKXĐ: \(|x|\ge|y|,y\ne0,y\ne5.\)Ta có: 

Với \(x+\sqrt{x^2-y^2}=0\)thế vào (1) ta được \(x=0\). Khi đó thay x=0 vào (2):

\(0=\frac{5}{6\left(5-y\right)}\)(vô lí) 

\(\Rightarrow x+\sqrt{x^2-y^2}\ne0\), Ta có:

\(\hept{\begin{cases}\frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}=\frac{9x}{5}\\\frac{x}{y}=\frac{5+3x}{6\left(5-y\right)}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{\left(x+\sqrt{x^2-y^2}\right)^2}{\left(x-\sqrt{x^2-y^2}\right)\left(x+\sqrt{x^2-y^2}\right)}=\frac{9x}{5}\\6x\left(5-y\right)=\left(5+3x\right)y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{\left(x+\sqrt{x^2-y^2}\right)^2}{y^2}=\frac{9x}{5}\left(3\right)\\30x=5y+9xy\left(4\right)\end{cases}}\)

Ta thấy  Vế trái của phương trình (3) lớn hơn 0 => \(\frac{9x}{5}>0\Rightarrow x>0\)

Khi đó (4) \(\Leftrightarrow y=\frac{30x}{5+9x}>0\)

Vậy \(x,y>0\), Tiếp tục biến đổi từ (3) và (4) ta có hệ:

\(\hept{\begin{cases}\frac{x^2+2x\sqrt{x^2-y^2}+x^2-y^2}{y^2}=\frac{9x}{5}\\\left(9x+5\right)y=30x\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{2x^2}{y^2}+\frac{2x}{y}.\sqrt{\frac{x^2-y^2}{y^2}}-1=\frac{9x}{5}\\9x+5=30\frac{x}{y}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\left(\frac{x}{y}\right)^2+2\frac{x}{y}\sqrt{\left(\frac{x}{y}\right)^2-1}=\frac{9x+5}{5}\\\frac{9x+5}{5}=6\frac{x}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(\frac{x}{y}\right)^2+2\frac{x}{y}\sqrt{\left(\frac{x}{y}\right)^2-1}=6\frac{x}{y}\left(5\right).\\9x+5=30\frac{x}{y}\left(6\right)\end{cases}}\)

Đặt \(\frac{x}{y}=a>0\)ta có;

\(\left(5\right)\Leftrightarrow2a^2+2a\sqrt{a^2-1}=6a\)\(\Leftrightarrow a^2+a\sqrt{a^2-1}-3a=0\Leftrightarrow a+\sqrt{a^2-1}-3=0\)

\(\Leftrightarrow\sqrt{a^2-1}=3-a\Leftrightarrow a^2-1=9-6a+a^2\Leftrightarrow6a=10\Leftrightarrow a=\frac{5}{3}\)

\(\Rightarrow\frac{x}{y}=\frac{5}{3}\)Thế vào (6) ta được \(9x+5=30.\frac{5}{3}\Leftrightarrow x=5\left(TMĐK\right).\)

\(\Rightarrow y=\frac{3.5}{5}=3\left(TMĐK\right).\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(5;3\right).\)

Mong các bạn góp ý cho bài của mình để lần sau mình rút kinh nghiệm .cảm ơn

NV
10 tháng 7 2019

a/ Bạn tự giải

b/ ĐKXĐ:...

Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)

Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)

\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)

\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)

Chắc bạn ghi sai đề, nghiệm quá xấu

3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)

4/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)

\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)

20 tháng 10 2020

ĐK: \(x,y\ne0\)

Hệ pt tương đương với:

\(\hept{\begin{cases}\frac{2}{x}=2y^4-2x^4+3y^4+3x^4+10x^2y^2\\\frac{1}{y}=3y^4+3x^4-2y^4+2x^4+10x^2y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2=5y^4x+x^5+10x^3y^2\\1=5x^4y+y^5+10x^2y^3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2+1=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\\2-1=x^5-5x^4y+10x^3y^2-10x^2y^3+5xy^4-y^5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^5=3\\\left(x-y\right)^5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=\sqrt[5]{3}\\x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1+\sqrt[5]{3}}{2}\\y=\frac{\sqrt[5]{3}-1}{2}\end{cases}}}\)

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}