Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Xét riêng 2 căn lớn đầu tiên
Bình phương, thu gọn được căn(12-8 căn 2)
Giờ kết hợp kết quả này với căn lớn còn lại
Tiếp tục bình phương, thu gọn là xong
mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé
a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)
Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương
\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)
Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)
\(\hept{\begin{cases}\sqrt{2x+3}+x^2+2x=\sqrt{2y-1}+y^2-2y\left(1\right)\\\sqrt{x-2}+\sqrt{y-1}=3\left(2\right)\end{cases}}\)
\(Đkxđ:x\ge2;y\ge1\)
\(\left(1\right)\Leftrightarrow\sqrt{2x+3}-\sqrt{2y-1}=y^2-x^2-2\left(y+x\right)\)
\(\frac{2x-2y+4}{\sqrt{2x+3}+\sqrt{2y-1}}=\left(x+y\right)\left(y-x\right)-2\left(y+x\right)\)
\(\Leftrightarrow\frac{2\left(x-y+2\right)}{\sqrt{2x+3}+\sqrt{2y-1}}+\left(x+y\right)\left(x-y+2\right)=0\)
\(\Leftrightarrow\left(x-y+2\right)\left(\frac{2}{\sqrt{2x+3}+\sqrt{2y-1}}+x+y\right)=0\)
\(\Leftrightarrow x-y+2=0\)
\(\Leftrightarrow x=y-2\)
Thay vào \(\left(2\right)\) ...................................................................