\(x^3+x^3y^3+y^3=17\)    

\(x+xy+y=5\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

Đặt \(x+y=a;xy=b\)

Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}a^3-3ab+b^3=17\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)

Từ (1) và (2) suy ra được : \(\left(a+b\right)^3-3ab\left(a+b\right)-3ab=17\Leftrightarrow5^3-3.5ab-3ab=17\Leftrightarrow ab=6\)

Ta có hệ mới : \(\hept{\begin{cases}a+b=5\\ab=6\end{cases}}\)

Đưa hệ trên về dạng phương trình tích.

Nghiệm của hệ trên là : \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)và \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

Thay ẩn a,b bằng ẩn x,y và hệ thức tương ứng, ta được hệ mới : \(\hept{\begin{cases}x+y=2\\xy=3\end{cases}\Leftrightarrow x,y\in\phi}\)và \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)hoặc \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Kết luận : (x;y) = (1;2) ; (2;1)

10 tháng 6 2016

Cho biểu thức : M = (b^2 +c^2 - a^2 )^2-4b^c^2

a) Phân tích M thành 4 nhân tử bậc nhất

b) CMR : Nếu a,b,c là số đo độ dài các cạnh của một tam giác thì M<0

c) Giả sử a,b,c là các số nguyên và a+b+c chia hết cho 6 . CMR : M chia hết cho 6 

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

11 tháng 1 2021

x + y - xy = 1

=> x + y - xy - 1 = 0

=> (x - 1) + y(1 - x) = 0

=> (y - 1)(1 - x) = 0 

=> \(\orbr{\begin{cases}y=1\\x=1\end{cases}}\)

Nếu x = 1

Khi đó  x2 + y2 = 5

<=> 12 + y2 = 5

=> y2 = 4

=> y = \(\pm\)2

Nếu  y = 1

=> x2 + y2 = 5

=> x2 + 12 = 5

=> x2 = 4

=> x = \(\pm\)2

Vậy các cặp (x;y) thỏa mãn là (1;2) ; (1;-2) ; (2;1) ; (-2;1)

14 tháng 8 2016

Hệ PT <=> hệ 2x - 2y -xy=0(1) và x+ 6y= 10(2)

Thế x = 2y/(2-y2) vào (2) ta được 

6y- 34y+68y-40 = 0 <=> (y-1)(6y- 28y+ 40)=0 

Dễ thấy 6y- 28y+ 40 >0 nên y- 1= 0

Còn lại bạn tự giải nha

14 tháng 8 2016

cảm ơn bạn nhìu nha ahihi

5 tháng 7 2016

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\), hệ trên trở thành:

\(\hept{\begin{cases}a\left(a^2-3b\right)+b^3=17\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}\left(5-b\right)\left[\left(5-b\right)^2-3b\right]+b^3=17\\a=5-b\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}18b^2-90b+108=0\\a=5-b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=3\\b=2\end{cases}}\) hoặc \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)

Từ đó ta có : \(\hept{\begin{cases}x=1\\y=2\end{cases}}\) hoặc \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Chúc em học tốt :)

28 tháng 1 2020

Câu dễ làm trước !

b) \(\hept{\begin{cases}x^4+x^2y^2+y^4=481\\x^2+xy+y^2=37\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)-x^2y^2=481\\x^2+xy+y^2=37\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-xy+y^2\right)=13\\x^2+xy+y^2=37\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=12\\x^2+y^2=25\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x^2+2xy+y^2\right)-xy=37\\\left(x^2-2xy+y^2\right)+xy=13\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=49\\\left(x-y\right)^2=1\end{cases}}\) (thay xy=12)

\(\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=-4\\y=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+y=7\\x-y=1\end{cases}}\\\hept{\begin{cases}x+y=-7\\x-y=-1\end{cases}}\end{cases}}\)

22 tháng 1 2020

Bài này em cũng không chắc lắm nha :)

Đặt \(S=x+y;P=xy\)

Ta có: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=S^3-3PS\)

Ta có hệ: \(\hept{\begin{cases}S^3-3PS+P^3=17\\S+P=5\end{cases}}\)

Lại đặt: \(S+P=S_1;SP=P_1\) ta có:

\(S^3+P^3=\left(S+P\right)^3-3SP\left(S+P\right)=S_1^2-3P_1S_1\)

Ta có hệ: \(\hept{\begin{cases}S^3_1-3P_1S_1-3P_1=17\\S_1=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}S_1=5\\P_1=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}S=2\\P=3\end{cases}}\) Hoặc \(\hept{\begin{cases}S=3\\P=2\end{cases}}\)

Vì \(S^2\ge4P\) nên chỉ có \(\hept{\begin{cases}S=3\\P=2\end{cases}}\)

Thỏa mãn \(\Rightarrow\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)

\(\Rightarrow x,y\) là nghiệm của pt:

\(X^2+3X+2=0\Leftrightarrow\orbr{\begin{cases}X=1\\X=2\end{cases}}\)

Nghiệm của hệ là: \(\left(1;2\right);\left(2;1\right)\)

22 tháng 1 2020

cảm ơn bạn nhìu nghe:))

7 tháng 1 2017

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)

Đơn giản rồi làm tiếp nhé

7 tháng 1 2017

\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)

Với x = 0 thì y = 0

Với x \(\ne\)0 thì nhân pt trên cho x ta được

\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế được

\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)

\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)

\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)

Tới đây thì đơn giản roofin làm tiếp nhé