\(\left\{{}\begin{matrix}x+y+2xy=2\\x^3+y^3=8\end{matrix}\right.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Đặt \(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\). Điều kiện: \(S^2\ge4P\), hệ phương trình đã cho trở thành:

\(\left\{{}\begin{matrix}S+2P=2\\S\left(S^2-3P\right)=8\end{matrix}\right.\) \(\Leftrightarrow \left\{ \begin{array}{l} P = \dfrac{{2 - S}}{2}\\ S\left( {{S^2} - \dfrac{{6 - 3S}}{2}} \right) = 8 \end{array} \right. \Rightarrow 2{S^3} + 3{S^2} - 6S - 16 = 0\)

\(\Leftrightarrow\left(S-2\right)\left(2S^2+7S+8\right)=0\Leftrightarrow S=2\Rightarrow P=0\)

Suy ra $x,y$ là hai nghiệm của phương trình: \(X^2-2X=0\Leftrightarrow\left[{}\begin{matrix}X=0\\X=2\end{matrix}\right.\)

Từ đó ta có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\end{matrix}\right.\)

25 tháng 5 2021

sao bạn ra đc S(S2-3P)=8 thế ?

1 tháng 1 2018

1. Đề này là 18 chứ không phải 15 nhé

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) và (1) - (2) ta được hệ mới

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)

\(\Rightarrow x=8-y\)

\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

1 tháng 1 2018

2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình

HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ; (1) - (2) ta được

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)

Lấy ( 3) nhân (4)

\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)

\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)

\(\Rightarrow y=3x\)

đến đây thì dễ rồi

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

24 tháng 2 2018

Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)

=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1

Câu 2 dùng vi-et đảo

Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới

Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ

NV
26 tháng 7 2020

a/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-16xy+4y^2=4\\y^2-3xy=4\end{matrix}\right.\)

\(\Rightarrow4x^2-13xy+3y^2=0\)

\(\Leftrightarrow\left(x-3y\right)\left(4x-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3y\\y=4x\end{matrix}\right.\)

Thay vào pt sau: \(\left[{}\begin{matrix}y^2-3y.y=4\left(vn\right)\\\left(4x\right)^2-3x.4x=4\end{matrix}\right.\)

\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1;y=4\\x=-1;y=-4\end{matrix}\right.\)

b/

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)

\(\Rightarrow3x^2-8xy+4y^2=0\)

\(\Leftrightarrow\left(x-2y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}x=2y\\x=\frac{2}{3}y\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2\left(2y\right)^2-3.2y.y+y^2=3\\2\left(\frac{2}{3}y\right)^2-3.\frac{2}{3}y.y+y^2=3\end{matrix}\right.\) bạn tự giải nốt