K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 7 2019

1/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)

\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)

2/ ĐKXĐ:...

Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)

3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)

4/ Bạn tự giải

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)

28 tháng 6 2020
Điều kiện: \(y\ne0\); \(x+\frac{1}{y}\)\(\ge0\); \(x+y\ge3\).Đặt: \(a=\sqrt{x+\frac{1}{y}}\) ; \(b=\sqrt{x+y-3}\) \((a,b\ge0)\)Ta có: \(2x+y+\frac{1}{y}=8\)\(\ \Leftrightarrow\) \(\left(x+\frac{1}{y}\right)+\left(x+y-3\right)=5\) \(\Leftrightarrow\) \(a^2+b^2=5\)\(^{ }\)Hệ phương trình \(\Leftrightarrow\) \(\begin{cases}a+b=3\\a^2+b^2=5\end{cases}\)\(\ \Leftrightarrow\)\(\begin{cases}a=3-b\\\left(3-b\right)^2+b^2=5\ \left(1\right)\end{cases}\) \(\left(1\right)\Leftrightarrow\) \(b^2-6b+9+b^2=5\) \(\Leftrightarrow\) \(2b^2-6b+4=0\) \(\Leftrightarrow\) \(\Delta'=\left(-3\right)^2-2.4=1>0\) \(\Rightarrow\ \left(1\right)\) có hai nghiệm phân biệt: \(b_1=\frac{3+\sqrt{1}}{2}=2\) ; \(b_2=\frac{3-\sqrt{1}}{2}=1\) *Với \(b=2\) \(\Rightarrow\ a=3-b=3-2=1\)Ta có: \(\begin{cases}\sqrt{x+y-3}=2\\\sqrt{x+\frac{1}{y}}=1\ \end{cases}\)\(\ \) \(\Leftrightarrow\) \(\begin{cases}x+y-3=4\\x+\frac{1}{y}=1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x+y=7\\x+\frac{1}{y}=1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}y-\frac{1}{y}=6\\x+y=7\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}y^2-6y-1=0\\x+y=7\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left[\begin{matrix}y=3+\sqrt{10}\\y=3-\sqrt{10}\end{matrix}\right.\\x=7-y\end{cases}\) \(\Leftrightarrow\) \(\left[\begin{matrix}\begin{cases}y=3+\sqrt{10}\\x=4-\sqrt{10}\end{cases}\\\begin{cases}y=3-\sqrt{10}\\x=4+\sqrt{10}\end{cases}\end{matrix}\right.\) *Với \(b=1\ \Rightarrow\ a=3-b=3-1=2\)Ta có: \(\begin{cases}\sqrt{x+y-3}=1\\\sqrt{x+\frac{1}{y}}=2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x+y=4\\x+\frac{1}{y}=4\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}y-\frac{1}{y}=0\\x+y=4\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}y^2-1=0\\x+y=4\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left[\begin{matrix}y=1\\y=-1\end{matrix}\right.\\x=4-y\end{cases}\) \(\Leftrightarrow\) \(\left[\begin{matrix}\begin{cases}y=1\\x=3\end{cases}\\\begin{cases}y=-1\\x=5\end{cases}\end{matrix}\right.\)
NV
3 tháng 3 2020

a.

\(\Leftrightarrow\left\{{}\begin{matrix}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x-6y=66\\-3x=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x^2+xy+3=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+x\left(1-x\right)+3=0\)

\(\Leftrightarrow x+3=0\Rightarrow x=-3\Rightarrow y=4\)

NV
3 tháng 3 2020

c.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{2x-5}{3}\\x^2-y^2=40\end{matrix}\right.\)

\(\Rightarrow x^2-\left(\frac{2x-5}{3}\right)^2-40=0\)

\(\Leftrightarrow9x^2-\left(4x^2-20x+25\right)-360=0\)

\(\Leftrightarrow5x^2+20x-385=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\Rightarrow y=3\\x=-11\Rightarrow y=-9\end{matrix}\right.\)

d.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{36-3x}{2}\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(\frac{36-3x}{2}-3\right)=18\)

\(\Leftrightarrow\left(x-2\right)\left(10-x\right)=12\)

\(\Leftrightarrow-x^2+12x-32=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=12\\x=8\Rightarrow y=6\end{matrix}\right.\)