K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

 

Hệ phương trình tương đương  S + P = 11 S P = 30 ⇒ S 11 − S = 30

Khi S=5 thì P=6 nên x, y là nghiệm của hệ phương trình  x + y = 5 x y = 6 ⇔ x = 2 ; y = 3 x = 3 ; y = 2 suy ra hệ có nghiệm (2; 3), (3; 2)

Khi S=6 thì P=5 nên x, y là nghiệm của hệ phương trình  x + y = 6 x y = 5 ⇔ x = 1 ; y = 5 x = 5 ; y = 1 suy ra hệ có nghiệm (1; 5), (5; 1).

Đáp án cần chọn là: D

 

14 tháng 8 2019

Đáp án: B

14 tháng 3 2019

Ta có :   x + y = 1 x - y = 2 a - 1 ⇔ x + y = 1 2 x = 2 a ⇔ y = 1 - a x = a

Do đó :

x y = a . 1 - a = a - a 2 = - a 2 - 2 . 1 2 a + 1 4 + 1 4 = - a - 1 2 2 + 1 4   

Do  - a - 1 2 2 ≤ 0 ∀ a ⇒ - a - 1 2 2 + 1 4 ≤ 1 4

Suy ra,giá  trị lớn nhất của xy là 1 4  khi a = 1 2 .

Đáp án là B.

8 tháng 9 2019

Đáp án: A

6 tháng 4 2021

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

NV
15 tháng 12 2020

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=30\\x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\x+y=6\end{matrix}\right.\)

Thep Viet đảo, x và y là nghiệm:

\(t^2-6t+3=0\Rightarrow\left[{}\begin{matrix}t=3+\sqrt{6}\\t=3-\sqrt{6}\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(3+\sqrt{6};3-\sqrt{6}\right);\left(3-\sqrt{6};3+\sqrt{6}\right)\)

16 tháng 11 2018

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=81\\xy+yz+xz=27\\\dfrac{xy+xz+zy}{xyz}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=81\\xy+yz+xz=27\\xyz=27\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=27\\xy+yz+xz=27\\xyz=27\end{matrix}\right.\Leftrightarrow x^2+y^2+z^2=xy+yz+xz=xyz\)

theo bđt ta có \(x^2+y^2+z^2\ge xy+xz+yz\)

để \(x^2+y^2+z^2=xy+xz+yz\) khi \(x=y=z=3\)