K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

\(\begin{cases}x^2\left(x-3\right)-y\sqrt{y-3}=-2\left(1\right)\\3\sqrt{x-2}=\sqrt{y\left(y+8\right)}\left(2\right)\end{cases}\) Điều kiện \(x\ge2;y\ge0\) (*)

Khi đó (1) \(\Leftrightarrow x^3-3x^2+2=y\sqrt{y+3}\)

               \(\Leftrightarrow\left(x-1\right)^3-3\left(x-1\right)=\left(\sqrt{y+3}\right)^3-3\sqrt{y+3}\left(3\right)\)

Xét hàm số \(f\left(t\right)=t^3-3t\) trên \(\left(1;+\infty\right)\)

Ta có \(f\left(t\right)=3t^2-3=3\left(t^2-1\right)\ge0\) với mọi \(t\ge1\) suy ra hàm số đồng biến  trên  \(\left(1;+\infty\right)\)

Nên (3) \(\Leftrightarrow x-1=\sqrt{y+3}\Leftrightarrow x-2=\sqrt{y+3}-1\left(4\right)\)
(2) \(\Leftrightarrow9\left(x-2\right)=y^2+8\left(5\right)\)
Thay (4) vào (5) được \(9\left(\sqrt{y+3}-1\right)=y^2+8y\) (*)
\(\Leftrightarrow9\left(\sqrt{y+3}-2\right)=y^2+8y-9\Leftrightarrow\frac{9\left(y-1\right)}{\sqrt{y+3}+2}-\left(y-1\right)\left(y+9\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{9}{\sqrt{y+3}+2}-y-9\right)=0\Leftrightarrow y=1\)
Với \(y\ge0\) thì \(\frac{9}{\sqrt{y+3}+2}-y-9<0\) vậy (*) có nghiệm y=1, khi đó x=3
Kết luận : (x;y)=(3;1)
hệ phương trình 1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\) 3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\) 4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\) 5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\) 6 ,...
Đọc tiếp

hệ phương trình

1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\)

3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\)

4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\)

5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}\frac{x+1}{y-1}=5\\3\left(2x-2\right)-4\left(3x+4\right)=5\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}2x+y=4\\\left|x-2y\right|=3\end{matrix}\right.\)

8 , \(\left\{{}\begin{matrix}\frac{2x}{x+1}+\frac{y}{y+1}=3\\\frac{x}{x+1}-\frac{3y}{y+1}=-1\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}y-\left|x\right|=1\\2x-y=1\end{matrix}\right.\)

10 , \(\left\{{}\begin{matrix}\sqrt{x+3y}=\sqrt{3x-1}\\5x-y=9\end{matrix}\right.\)

0
1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........

16 tháng 2 2021

song ngư đẹp trai

16 tháng 2 2021

hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu

11 tháng 8 2017

1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)

Lấy (1). 2 - (2) ta được:

\(2x^3+y^3-x^2y-2xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

Đến đây dễ rồi nhé ^^

2/ Ta viết lại pt thứ 2 của hệ:

\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)

\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)

\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)

Bạn làm tiếp nhé!

11 tháng 8 2017

3/ Ta viết lại pt thứ nhất của hệ

\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)

\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)

Bạn làm tiếp được chứ?

4/ Viết lại pt thứ 2 của hệ

\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)