\(\left\{{}\begin{matrix}x^3=7x+3y\\y^3=7y+3x\end{matrix}\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

pt có dạng dối xứng

=> x=y

giải tìm dược (x,y)=(\(\sqrt{10}\),\(\sqrt{10}\)) (0,0) (\(-\sqrt{10}\),\(-\sqrt{10}\))

30 tháng 1 2018

cô chứng minh cái còn lại vô nghiệm thế nào? Làm sao chỉ tôi với.

31 tháng 5 2020

a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)

\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)

31 tháng 5 2020

bạn giải câu g hộ mỉnh đc ko

20 tháng 1 2018

a) \(\left\{{}\begin{matrix}x-y=3\left(1\right)\Rightarrow y=x-3\left(3\right)\\3x-4y=2\left(2\right)\end{matrix}\right.\)

thay (3) vào (2)\(\Rightarrow3x-4\left(x-3\right)=2\)

\(\Leftrightarrow3x-4x+12=2\)

\(\Leftrightarrow-x=-10\Leftrightarrow x=10\)

thay x=10 vào (3)\(\Rightarrow y=10-3=7\)

Nghiệm của hệ \(\left\{10;7\right\}\)

b)\(\left\{{}\begin{matrix}7x-3y=5\left(1\right)\\4x+y=2\left(2\right)\Rightarrow y=2-4x\left(3\right)\end{matrix}\right.\)

thay (3) vào (1)\(\Rightarrow7x-3\left(2-4x\right)=5\)

\(\Leftrightarrow7x-6+12x=5\)

\(\Leftrightarrow19x=11\Leftrightarrow x=\dfrac{11}{19}\)

thay \(x=\dfrac{11}{19}vào\left(3\right)\)\(\Rightarrow y=2-4\dfrac{11}{19}=-\dfrac{6}{19}\)

nghiệm của hệ \(\left\{\dfrac{11}{19};\dfrac{-6}{19}\right\}\)

c)\(\left\{{}\begin{matrix}x+3y=-2\left(1\right)\Rightarrow x=-2-3y\left(3\right)\\5x-4y=1\left(2\right)\end{matrix}\right.\)

thay (3) vào (2)\(\Rightarrow5\left(-2-3y\right)-4y=1\)

\(\Leftrightarrow-10-15y-4y=1\)

\(\Leftrightarrow-19y=11\Leftrightarrow y=\dfrac{-11}{19}\)

thay \(y=\dfrac{-11}{19}vào\left(3\right)\Rightarrow x=-2-3\left(\dfrac{-11}{19}\right)=\dfrac{-5}{19}\)nghiệm của hệ \(\left\{\dfrac{-5}{9};\dfrac{-11}{19}\right\}\)

c)\(\left\{{}\begin{matrix}x+3y=-2\left(1\right)\Rightarrow x=-2-3y\left(3\right)\\5x-4y=1\left(2\right)\end{matrix}\right.\)

thay (3) vào (2)\(\Rightarrow5\left(-2-3y\right)-4y=1\)

\(\Leftrightarrow-10-15y-4y=1\)

\(\Leftrightarrow-19y=11\Leftrightarrow y=\dfrac{-11}{19}\)

thay \(y=\dfrac{-11}{19}vào\left(3\right)\Rightarrow x=-2-3\left(\dfrac{-11}{19}\right)=\dfrac{-5}{19}\)

nghiệm của hệ\(\left\{\dfrac{-5}{19};\dfrac{-11}{19}\right\}\)

CHÚC BẠN HỌC TỐT !

21 tháng 1 2018

-có người nhờ t làm

\(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-3y=9\left(1\right)\\3x-4y=2\left(2\right)\end{matrix}\right.\) lấy (1)-(2) tìm được x;sau đó dễ dàng có y
\(\left\{{}\begin{matrix}7x-3y=5\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}28x-12y=20\left(1\right)\\28x+7y=14\left(2\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+3y=-2\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\left(1\right)\\5x-4y=11\left(2\right)\end{matrix}\right.\)

Gt: Nhân sao cho cả 2 pt xuất hiện chung 1 thừa số,trừ đi chỉ còn 1 x or y

3 tháng 4 2017

Từ x - y = 3 => x = 3 + y.

Thay x = 3 + y vào phương trình 3x - 4y = 2.

Ta được 3(3 + y) - 4y = 2 ⇔ 9 + 3y - 4y = 2.

⇔ -y = -7 ⇔ y = 7

Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.

Vậy hệ phương trình có nghiệm (10; 7).

b) Từ 4x + y = 2 => y = 2 - 4x.

Thay y = 2 - 4x vào phương trình 7x - 3y = 5.

Ta được 7x - 3(2 - 4x) = 5 ⇔ 7x - 6 + 12x = 5.

⇔ 19x = 11 ⇔ x =

Thay x = vào y = 2 - 4x ta được y = 2 - 4 . = 2 - = -

Hệ phương trình có nghiệm (; -)

c) Từ x + 3y = -2 => x = -2 - 3y.

Thay vào 5x - 4y = 11 ta được 5(-2 - 3y) - 4y = 11

⇔ -10 - 15y - 4y = 11

⇔ -19y = 21 ⇔ y = -

Nên x = -2 -3(-) = -2 + =

Vậy hệ phương trình có nghiệm (; -).

29 tháng 1 2021

Từ x - y = 3 => x = 3 + y.

Thay x = 3 + y vào phương trình 3x - 4y = 2.

Ta được 3(3 + y) - 4y = 2 ⇔ 9 + 3y - 4y = 2.

⇔ -y = -7 ⇔ y = 7

Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.

Vậy hệ phương trình có nghiệm (10; 7).

b) Từ 4x + y = 2 => y = 2 - 4x.

Thay y = 2 - 4x vào phương trình 7x - 3y = 5.

Ta được 7x - 3(2 - 4x) = 5 ⇔ 7x - 6 + 12x = 5.

⇔ 19x = 11 ⇔ x = 

Thay x =  vào y = 2 - 4x ta được y = 2 - 4 .  = 2 -  = -

Hệ phương trình có nghiệm (; -)

c) Từ x + 3y = -2 => x = -2 - 3y.

Thay vào 5x - 4y = 11 ta được 5(-2 - 3y) - 4y = 11

⇔ -10 - 15y - 4y = 11

⇔ -19y = 21 ⇔ y = -

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

14 tháng 12 2019

\(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4\left(5+3y\right)+5y=3\\x=5+3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}20+12y+5y=3\\x=5+3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20+17y=3\\x=5+3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x=5+3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

28 tháng 11 2019

a) \(\left\{{}\begin{matrix}7x+5y=19\left(1\right)\\3x+5y=31\left(2\right)\end{matrix}\right.\)

Lấy (1) - (2) ta có pt : 4x = -12 => x = -3. Thay vào (1 ) => y =8

12 tháng 2 2017

a) \(\left\{\begin{matrix}x^2=3x-y\left(1\right)\\y^2=3y-x\left(2\right)\end{matrix}\right.\)

Lấy (1) từ (2)\(x^2-y^2=3\left(x-y\right)+\left(x-y\right)=4\left(x-y\right)\Rightarrow\left\{\begin{matrix}x-y=0\left(4\right)\\x+y-4=0\left(5\right)\end{matrix}\right.\)

(4) thay x=y vào (1)\(\Leftrightarrow x^2=2x\Rightarrow\left\{\begin{matrix}x=0\\x=2\end{matrix}\right.\)(*)

(5) thay -y=x-4 vào(1)\(\Leftrightarrow x^2=3x+\left(x-4\right)\Leftrightarrow x^2-2x+4=0\) delta=1-4<0 vô nghiệm

Kết luận: hệ có nghiệm (x,y)=(0,0); (2,2)

b) tương tự câu (a) chú ý x^3-y^3=(x-y)(x^2+xy+y^2)