K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)

28 tháng 2 2021

$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$

`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$

`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$

Vậy HPT vô nghiệm

18 tháng 8 2018

nhân pt (2) vs 3 sau đó cộng pt (1) vs (2) ta đc

\(\left\{{}\begin{matrix}x^3+3xy^2=-46\\x^3+3xy^2+3x^2-24xy+3y^2=24y-51x-46\end{matrix}\right.\)

bây h ta chú ý tới pt dưới

\(x^3+3xy^2+3x^2-24xy+3y^2-24y+51x+46=0\)

\(\left(x+1\right)\left(x^2+2x+3y^2-24y+49\right)=0\)

\(\left(x+1\right)\left[\left(x+1\right)^2+3\left(y-4\right)^2\right]=0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\x^3+3xy^2=-49\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\)

vậy hệ có 2 nghiệm

18 tháng 8 2018

đm thể loại tự biên tự diễn

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

NV
22 tháng 7 2021

\(2x^2-\left(3y-3\right)x+y^2-2y+1=0\)

\(\Delta=\left(3y-3\right)^2-8\left(y^2-1y+1\right)=\left(y-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3y-3+y-1}{4}\\x=\dfrac{3y-3-y+1}{4}\end{matrix}\right.\)

\(\Rightarrow...\)

 

NV
23 tháng 12 2022

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+3xy^2=-49\\3x^2-24xy+3y^2=24y-51x\end{matrix}\right.\)

Cộng vế:

\(x^3+3x^2+3y^2\left(x+1\right)-24y\left(x+1\right)+51x+49=0\)

\(\Leftrightarrow\left(x+1\right)^3+3y^2\left(x+1\right)-24y\left(x+1\right)+48\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+3\left(x+1\right)\left(y-4\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2+3\left(y-2\right)^2\right]=0\)

NV
26 tháng 3 2021

Từ pt dưới:

\(x^2+9y^2=6xy\Leftrightarrow x^2-6xy+9y^2=0\)

\(\Leftrightarrow\left(x-3y\right)^2=0\Leftrightarrow x-3y=0\Leftrightarrow x=3y\)

Thế lên pt trên: \(2.\left(3y\right)^2+y^2=19\)

\(\Leftrightarrow19y^2=19\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=3\\y=-1\Rightarrow x=-3\end{matrix}\right.\)