Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)
(Các phần giải thích học sinh không phải trình bày).
(Chia hai vế của pt 2 cho √2 để hệ số của x bằng nhau)
(Trừ từng vế của hai phương trình)
Vậy hệ phương trình có nghiệm duy nhất
(Chia hai vế pt 2 cho √2 để hệ số của y đối nhau)
(Hệ số của y đối nhau nên cộng từng vế của 2 pt)
Vậy hệ phương trình có nghiệm duy nhất
Kiến thức áp dụng
Giải hệ phương trình bằng phương pháp cộng đại số
1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.
2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.
(Các phần giải thích học sinh không phải trình bày).
(Chia hai vế của pt 2 cho √2 để hệ số của x bằng nhau)
(Trừ từng vế của hai phương trình)
Vậy hệ phương trình có nghiệm duy nhất
x2-4xy+y2=1
y2-3xy=4
<=>x2-4xy+y2=1
y2-3xy-x2+4xy-y2=3
<=>x2-4xy+y2=1
xy-x2=3
<=>x2-4xy+y2=1
x(y-x)=3
=> x và y-x phải là ước của 3. Có nghĩa là x và y-x thuộc (1:3:-1:-3)
TH1: x=1
y-x=3
<=>x=1
y=4
TH2: x=-1
y-x=-3
<=> x=-1
y=-4
Vậy hệ phương trình có 2 nghiệm: (x:y)=(1:4) và (x:y)=(-1:-4)
Nhận xét: y = 0 không là nghiệm của 2 phương trinh trong hệ. Chia cả 2 vế của 2 pt cho y2 ta được
\(\left(\frac{x}{y}\right)^2-4.\left(\frac{x}{y}\right)+1=\frac{1}{y^2}\) (1)
\(1-3.\left(\frac{x}{y}\right)=\frac{4}{y^2}\) (2)
Thế (1) vào (2) ta được:
\(1-3.\left(\frac{x}{y}\right)=4.\left(\frac{x}{y}\right)^2-16\left(\frac{x}{y}\right)+4\)
<=> \(4.\left(\frac{x}{y}\right)^2-13\left(\frac{x}{y}\right)+3=0\) (*)
\(\Delta\) = 169 - 4.4.3 = 121 => PT (*) có 2 nghiệm là
\(\frac{x}{y}=\frac{13+11}{8}=3\) hoặc \(\frac{x}{y}=\frac{1}{4}\)
+) x/y = 3 => x = 3y. Thay vào pt thứ hai của hệ ta được y2 - 9y2 = 4 => -8y2 = 4 (Vô nghiệm)
+) x/y = 1/4 => y = 4x . Thay vào pt thứ hai của hệ ta được: 16x2 -12x2 = 4 => x2 = 1 => x = 1 hoặc x = -1
=> y = 4 hoặc y = -4
Vậy....
Đenta >=0 pt có hai nghiệm là :
\(x1=\frac{-b-\sqrt{\Delta}}{2a}vàx2=\frac{-b+\sqrt{\Delta}}{2a}\)
\(\hept{\begin{cases}x^2-4xy+y^2=3\left(1\right)\\y^2-3xy=2\left(2\right)\end{cases}}\)
-rút 2 biểu thức cùng bằng y2, đem 2 biểu thức đó trừ với nhau được: -x2+xy+1=0(b)
-Nhân (1) với 3, nhân (2) với 4. rút ra đc 2 biểu thức cùng bằng -12xy, đem 2 biểu thức đó trừ với nhau được : 1-3x2+y2=0(a)
trừ vế theo vế, có: (b)-(a)=2x2+xy-y2=0 =>(x2-y2)+(x2+xy)=0=> (x+y).(x-y)+x.(x+y)=0 => (x+y).(x-y+x)=0
=> (x+y).(2x-y)=0
tự làm tiếp
x 3 + 4 y = y 3 + 16 x 1 + y 2 = 5 ( 1 + x 2 ) ( 1 )
– Xét x = 0, hệ (I) trở thành 4 y = y 3 y 2 = 4 < = > y = ± 2
– Xét x ≠ 0, đặt y x = t < = > y = x t . Hệ (I) trở thành
x 3 + 4 x t = x 3 t 3 + 16 x 1 + x 2 t 2 = 5 ( 1 + x 2 ) < = > x 3 ( t 3 − 1 ) = 4 x t − 16 x x 2 ( t 2 − 5 ) = 4 < = > x 3 ( t 3 − 1 ) = 4 x ( t − 4 ) ( 1 ) 4 = x 2 ( t 2 − 5 ) ( 2 )
Nhân từng vế của (1) và (2), ta được phương trình hệ quả
4 x 3 ( t 3 − 1 ) = 4 x 3 ( t − 4 ) ( t 2 − 5 ) < = > t 3 − 1 = t 3 − 4 t 2 − 5 t + 20 (Do x ≠ 0) <=>4t 2 + 5 t − 21 = 0 < = > t = − 3 t = 7 4
+ Với t = – 3, thay vào (2) được x2 = 1 ⇔ x = ±1.
x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)
x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)
+ Với t = 7/4 , thay vào (2) được x 2 = − 64 31 (loại)
Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).
\(\hept{\begin{cases}x^2-4xy+y^2=1\\y^2-3xy=4\end{cases}}\)
\(\Rightarrow4x^2-16xy+4y^2=y^2-3xy\)
\(\Leftrightarrow4x^2-13xy+3y^2=0\)
\(\Leftrightarrow\left(4x-y\right)\left(x-3y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x=y\\x=3y\end{cases}}\)
Từ đây mỗi trường hợp thế vào phương trình \(y^2-3xy=4\).
Ta thu được nghiệm cuối cùng là: \(\left(1,4\right),\left(-1,-4\right)\).