\(\left\{{}\begin{matrix}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

\(hpt\Leftrightarrow\left\{{}\begin{matrix}2xy^2+4x-8y=-2\\x^2y^3+2xy^2-4x+3y=2\end{matrix}\right.\Rightarrow x^2y^3+4xy^2-5y=0\Leftrightarrow y\left(x^2y^2+4xy-5\right)=0\Leftrightarrow y\left(xy-1\right)\left(xy+5\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\\xy-1=0\\xy+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\\xy=1\\xy=-5\end{matrix}\right.\)

\(+,y=0\Rightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}.\text{thử lại ta thấy thỏa mãn}\)

\(+,xy=1\Rightarrow\left\{{}\begin{matrix}y+2x-4y=-1\\y+2y-4x+3y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-1\\6y-4x=2\end{matrix}\right.\Leftrightarrow2x=3y-1\Leftrightarrow x=\frac{3y-1}{2};xy=1\Rightarrow3y^2-y=2\Leftrightarrow y^2-\frac{1}{6}.2.y=\frac{2}{3}\Leftrightarrow\left(y-\frac{1}{6}\right)^2=\frac{25}{36}\Leftrightarrow.......\)

\(+,xy=5.\text{giải tương tự trường hợp 2}\)

13 tháng 10 2019

ủa bạn ơi hình như TH3 và TH2 là vô số nghiệm ak

13 tháng 10 2019

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2xy^2+4x-8y=-2\\x^2y^3+2xy^2-4x+3y=2\end{matrix}\right.\)(nhân 2 vế của pt thứ nhất của hệ với 2)

Cộng theo vế 2 pt trên: \(x^2y^3+4xy^2-5y=0\)

\(\Leftrightarrow y\left(x^2y^2+4xy-5\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\\x^2y^2+4xy-5=0\end{matrix}\right.\)

+)Với y = 0, thay vào pt đầu của hệ ban đầu ta được: \(x.0^2+2x-4.0=-1\Leftrightarrow x=-\frac{1}{2}\)

Ta được 1 bộ nghiệm: \(\left(x;y\right)=\left(-\frac{1}{2};0\right)\)

+)Với\(x^2y^2+4xy-5=0\Rightarrow\left[{}\begin{matrix}xy=1\\xy=-5\end{matrix}\right.\)

Từ đây ta thấy ngay x, y khác 0.(nếu x hoặc y = 0=> xy = 0 khác 1;-5, loại)

Tiếp tục xét 2 TH:

xy = 1 suy ra \(x=\frac{1}{y}\). Thay vào pt đầu của hệ ban đầu ta được:\(\frac{2}{y}-3y=-1\Leftrightarrow2-3y^2=-y\Leftrightarrow3y^2-y-2=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\frac{2}{3}\end{matrix}\right.\)

Với y =1=> x = 1. với y=-2/3 suy ra x = -3/2

Ta được thêm 2 bộ nghiệm: \(\left(x;y\right)=\left(-\frac{3}{2};-\frac{2}{3}\right)\text{ và }\left(1;1\right)\)

Chị thứ xét tiếp xy =5 xem sao? Em ko chắc đâu nhé! Mới làm quen hệ pt thôi ak.

13 tháng 10 2019

nhầm: Chị thử xét tiếp xy =-5 xem sao?

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

9 tháng 7 2017

cái này học trước r ak .

9 tháng 7 2017

lên fb mk gửi chi tiết cho

26 tháng 7 2017

1) hpt \(\Leftrightarrow\left\{{}\begin{matrix}x+4y=2\\6x+4y=8\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2-x}{4}\\5x=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=\dfrac{6}{5}\end{matrix}\right.\)

Kl: x=6/5 và y=1/5

2) hpt \(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y=4\\-2x-4y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\2y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Kl...

3) hpt \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=2\\2x-3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+3y}{2}\\0=3\left(vô-lý\right)\end{matrix}\right.\)

kl: hpt vn

8 tháng 7 2017

1/

\(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=6\\3x-3y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(2;0\right)\)

2/

\(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=2\\-4x+6y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0x=4\\-4x+6y=2\end{matrix}\right.\)

Vì 0x=4 vô nghiệm \(\Rightarrow-4x+6y=2\) vô nghiệm

Vậy hệ phương trình đã cho vô nghiệm

3/ \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+15y=25\\10x-8y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}23y=23\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\5x-4=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (1;1)

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

21 tháng 3 2020

1) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\8x+3\left(2-4x\right)=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\)

2) 2 pt 3 ẩn không giải được.

3) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\3x+2\left(x-2\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

4) \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+1}{2}\\-4\cdot\frac{3y+1}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

5) \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-3y+5}{2}\\5\cdot\frac{-3y+5}{2}-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

6) \(\left\{{}\begin{matrix}3x-y=7\\x+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2\left(3x-7\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

7) \(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-4y\\3\left(2-4y\right)+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{5}\\x=\frac{6}{5}\end{matrix}\right.\)

8) \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-x-2\\-2x-3\left(-x-2\right)=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)

9) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+2}{2}\\-4\cdot\frac{3y+2}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

21 tháng 3 2020

Nguyễn Thành Trương 2GP cả công đánh máy nữa nhé.