Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đề này là 18 chứ không phải 15 nhé
\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) và (1) - (2) ta được hệ mới
\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)
\(\Rightarrow x=8-y\)
\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình
HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) ; (1) - (2) ta được
\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)
Lấy ( 3) nhân (4)
\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)
\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)
\(\Rightarrow y=3x\)
đến đây thì dễ rồi
HPT \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=1\\\left(x-y\right)^3+3xy\left(x-y\right)=2xy+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=1\\x-y=-1\end{matrix}\right.\\\left(x-y\right)^3+3xy\left(x-y\right)=2xy+3\end{matrix}\right.\).
+) Nếu x - y = 1: Khi đó 1 + 3xy = 2xy + 3
\(\Leftrightarrow xy=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\end{matrix}\right.\).
+) Nếu x - y = -1: Khi đó -1 - 3xy = 2xy + 3
\(\Leftrightarrow5xy=-4\Leftrightarrow xy=-\frac{4}{5}\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\frac{-1}{5}\\y=\frac{4}{5}\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{-4}{5}\\y=\frac{1}{5}\end{matrix}\right.\end{matrix}\right.\).
Vậy...
Đặt \(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\). Điều kiện: \(S^2\ge4P\), hệ phương trình đã cho trở thành:
\(\left\{{}\begin{matrix}S+2P=2\\S\left(S^2-3P\right)=8\end{matrix}\right.\) \(\Leftrightarrow \left\{ \begin{array}{l} P = \dfrac{{2 - S}}{2}\\ S\left( {{S^2} - \dfrac{{6 - 3S}}{2}} \right) = 8 \end{array} \right. \Rightarrow 2{S^3} + 3{S^2} - 6S - 16 = 0\)
\(\Leftrightarrow\left(S-2\right)\left(2S^2+7S+8\right)=0\Leftrightarrow S=2\Rightarrow P=0\)
Suy ra $x,y$ là hai nghiệm của phương trình: \(X^2-2X=0\Leftrightarrow\left[{}\begin{matrix}X=0\\X=2\end{matrix}\right.\)
Từ đó ta có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=8\\x+y+2xy=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a^3-3ab=8\\a+2b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^3-3ab=8\\a=2-2b\end{matrix}\right.\)
\(\Rightarrow\left(2-2b\right)^3-3b\left(2-2b\right)=8\)
\(\Leftrightarrow...\)