\(\hept{\begin{cases}\frac{3}{x}+\frac{5}{y}=\frac{3}{2}\\\frac{5}{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

Đặt ẩn phụ rồi !

Phân tích như này cho b hiểu:

\(\Leftrightarrow\hept{\begin{cases}3.\frac{1}{x}+5.\frac{1}{y}=\frac{3}{2}\\5.\frac{1}{x}-2.\frac{1}{y}=\frac{1}{3}\end{cases}}\)

Đặt: a = 1/x , b = 1/y

\(\Leftrightarrow\hept{\begin{cases}3a+5b=\frac{3}{2}\\5a-2b=\frac{1}{3}\end{cases}}\)(nhân 2 cho cái trên, 5 cho cái dưới)

\(\Leftrightarrow\hept{\begin{cases}6a+10b=3\\25a-10b=\frac{5}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}31a=\frac{14}{3}\\6a+10b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{14}{93}\\6.\frac{14}{93}+10b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{14}{93}\\b=\frac{13}{62}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{14}{93}\\\frac{1}{y}=\frac{13}{62}\end{cases}}\)(nhân chéo chia ngang)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{93}{14}\\y=\frac{62}{13}\end{cases}}\)

Kết luận..

21 tháng 1 2017

Đặt : \(\frac{1}{x}=a;\frac{1}{y}=b\)

Hệ phương trình trở thành :

\(\hept{\begin{cases}3a+5b=\frac{3}{2}\\5a-2b=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}15a+25b=\frac{15}{2}\\15a-6b=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}31b=\frac{13}{2}\\15a-6b=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\15a-6.\frac{13}{62}=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\15a-\frac{39}{31}=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\a=\frac{14}{93}\end{cases}}}\)

Với \(a=\frac{14}{93}\Rightarrow\frac{1}{x}=\frac{14}{63}\Rightarrow x=\frac{9}{2}\)

Với \(b=\frac{13}{62}\Rightarrow\frac{1}{y}=\frac{13}{62}\Rightarrow y=\frac{62}{13}\)

30 tháng 11 2016

\(a,\hept{\begin{cases}\frac{x}{3}-\frac{y}{4}=2\\\frac{2x}{5}+y=18\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{1}{4}\left(18-\frac{2}{5}x\right)=2\\y=18-\frac{2}{5}x\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{9}{2}+\frac{1}{10}x=2\\y=18-\frac{2}{5}x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{13}{30}x=\frac{13}{2}\\y=18-\frac{2}{5}x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=15\\y=18-\frac{2}{5}.15\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)

\(b,\hept{\begin{cases}\frac{3}{4}x+\frac{2}{5}y=2,3\\x-\frac{3y}{5}=0,8\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\left(0,8+\frac{3}{5}y\right)+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}0,6+\frac{9}{20}y+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{17}{20}y=1,7\\x=0,8+\frac{3}{5}y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2\\x=0,8+\frac{3}{5}.2\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}}\)

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

8 tháng 3 2018

Ta có: \(\hept{\begin{cases}\frac{2}{3x-y}-\frac{5}{x-3y}=3\\\frac{1}{3x-y}+\frac{2}{x-3y}=\frac{3}{5}\end{cases}}\)  (3)

Điều kiện \(3x-y\ne0,x-3y\ne0\)

Đặt \(u=\frac{1}{3x-y}\)\(v=\frac{1}{x-3y}\)

Ta được \(\left(3\right)\Leftrightarrow\hept{\begin{cases}2u-5v=3\\u+2v=\frac{3}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}u=1\\v=-\frac{1}{5}\end{cases}}}\)

Từ đó \(\hept{\begin{cases}3x-y=1\\x-3y=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\) (Thỏa mãn)

P/s: Mình không biết nó đúng hay sai. Nếu sai thì thông cảm cho mình nhé

29 tháng 11 2017

cậu cứ nhân 5 vào phương trình (2)

cộng 2 phương trình lại cậu sẽ ra được x+y-1=2

thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13

giải hệ rồi tìm được x và y

4 tháng 2 2017

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!