K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Ta có: \(\hept{\begin{cases}\frac{2}{3x-y}-\frac{5}{x-3y}=3\\\frac{1}{3x-y}+\frac{2}{x-3y}=\frac{3}{5}\end{cases}}\)  (3)

Điều kiện \(3x-y\ne0,x-3y\ne0\)

Đặt \(u=\frac{1}{3x-y}\)\(v=\frac{1}{x-3y}\)

Ta được \(\left(3\right)\Leftrightarrow\hept{\begin{cases}2u-5v=3\\u+2v=\frac{3}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}u=1\\v=-\frac{1}{5}\end{cases}}}\)

Từ đó \(\hept{\begin{cases}3x-y=1\\x-3y=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\) (Thỏa mãn)

P/s: Mình không biết nó đúng hay sai. Nếu sai thì thông cảm cho mình nhé

8 tháng 7 2019

\(\hept{\begin{cases}\frac{3}{5}x-\frac{2}{5}y+\frac{5}{3}x-y-x=1\\\frac{2}{3}x-y+2x-\frac{3}{2}y-y=1\end{cases}}\)<=>\(\hept{\begin{cases}\frac{19}{15}x-\frac{7}{5}y=1\\\frac{8}{3}x-\frac{7}{2}y=1\end{cases}}\)<=>x=3;y=2

1 tháng 3 2018

\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)

\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)

18 tháng 8 2020

\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)

\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)

Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)

Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)

Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)

Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)

Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

27 tháng 7 2019

\(a,hpt\Leftrightarrow\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}27x-14y=-588\\15x+24y=150\end{cases}\Leftrightarrow}\hept{\begin{cases}9x-\frac{14}{3}y=-196\\5x+8y=50\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}45x-\frac{70}{3}y=-980\\45x+72y=450\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{286}{3}y=1430\\45x+72y=450\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}y=15\\x=-14\end{cases}}\)

14 tháng 11 2019

1.

\(ĐK:x\ne0\)

HPT

\(\Leftrightarrow\hept{\begin{cases}2x\left(x+y\right)-3x+1=0\\3x\left(x+y\right)-x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x\left(x+y\right)-\frac{9}{2}x+\frac{3}{2}=0\left(1\right)\\3x\left(x+y\right)-x-2=0\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\frac{7}{2}x=\frac{7}{2}\)

\(\Leftrightarrow x=1\left(3\right)\)

\(\left(1\right),\left(3\right)\Rightarrow3\left(1+y\right)-3=0\)

\(\Leftrightarrow y=0\)

Vay nghiem cua HPT la \(\left(1;0\right)\)

12 tháng 8 2018

a. \(=>\hept{\begin{cases}3xy=\frac{y^2+2}{x}\\3xy=\frac{x^2+2}{y}\end{cases}=>\frac{y^2+2}{x}=\frac{x^2+2}{y}}\\ \)

=> \(y^3+2y=x^3+2x=>x^3-y^3+2x-2y=0\\ \)

=>\(\left(x-y\right)\left(x^2+y^2+xy+2\right)=0\\ \)

\(x^2+y^2+xy\ge0=>x^2+y^2+xy+2>0\)

=> x-y=0=> x=y

14 tháng 11 2017
Chịu
11 tháng 1 2022

google xin tài trợ chương trình