Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem lại dấu ở PT thứ 2
ĐK : ...
\(\hept{\begin{cases}2+6y=\frac{x}{y}-\sqrt{x-2y}\left(1\right)\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\left(2\right)\end{cases}}\)
Ta có : ( 1 ) \(\Leftrightarrow2y+6y^2=x-y\sqrt{x-2y}\Leftrightarrow x-2y-y\sqrt{x-2y}-6y^2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{x-2y}}{y}\right)^2-\frac{\sqrt{x-2y}}{y}-6=0\Leftrightarrow\orbr{\begin{cases}\frac{\sqrt{x-2y}}{y}=3\\\frac{\sqrt{x-2y}}{y}=-2\end{cases}}\)
-Với \(\frac{\sqrt{x-2y}}{y}=3\Rightarrow\sqrt{x-2y}=3y\). Thay vào ( 2 ), ta có :
\(\sqrt{x+3y}=x+3y-2\Rightarrow\left(x+3y\right)-\sqrt{x+3y}-2=0\Rightarrow\orbr{\begin{cases}\sqrt{x+3y}=2\\\sqrt{x+3y}=-1\left(loai\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+3y=4\\\sqrt{x-2y}=3y\end{cases}}\Leftrightarrow....\)
-Với \(\frac{\sqrt{x-2y}}{y}=-2\Rightarrow\sqrt{x-2y}=-2y\Leftrightarrow\hept{\begin{cases}\sqrt{x-2y}=x+3y-2\\\sqrt{x-2y}=-2y\end{cases}\Leftrightarrow....}\)
Vậy ....
\(2x+6y=\frac{x}{y}-\sqrt{x-2y}\)
\(\Leftrightarrow x-2y-y\sqrt{x-2y}-6y^2=0\)
Đến đây ta có thể biểu diễn đại lượng \(\sqrt{x-2y}\)bởi các biểu thức đơn giản hơn bài toán đã gần như được hoàn thành. Thật vậy,
- Nếu \(\sqrt{x-2y}=-2y\)(*) thì từ pt thứ 2 ta có:
\(\sqrt{x-2y}=x+3y-2\Leftrightarrow-2y=x+3y-2\Leftrightarrow x=2-5y\)
Tiếp tục thay vào (*) ta có: \(\sqrt{2-7y}=-2y\)
Giải pt này kết hợp với điều kiện ta có nghiệm (x;y)=(12;-2)
- Nếu \(\sqrt{x-2y}=3y\)(**) thì từ pt hai ta có
\(\sqrt{x+3y}=x+3y-2\Leftrightarrow\left(\sqrt{x+3y}-2\right)\left(\sqrt{x+3y}+1\right)=0\)
\(\Leftrightarrow x+3y=4\). Thay vào (**) ta được \(\sqrt{4-5y}=3y\)
Tiến hành giải và so sanh điều kiện ta có nghiệm \(\left(x;y\right)=\left(\frac{8}{3};\frac{4}{9}\right)\)
Vậy hệ pt có 2 nghiệm (x;y)=(12;-2); \(\left(\frac{8}{3};\frac{4}{9}\right)\)
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}2y+6y^2=x-y\sqrt{x-2y}\\y\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(x-2y\right)-y\sqrt{x-2y}-6y^2=0\\y\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{\sqrt{x-2y}}{y}\right)^2-\frac{\sqrt{x-2y}}{y}-6=0\\y\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}t^2-t-6=0\\t=\frac{\sqrt{x-2y}}{y}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}t=\frac{\sqrt{x-2y}}{y}=3\\t=\frac{\sqrt{x-2y}}{y}=-2\end{cases}}\)
- Xét \(\sqrt{x-2y}=3y\left(x+3y\right)-\sqrt{x+3y}-2=0\)
\(\Leftrightarrow\hept{\begin{cases}t=\sqrt{x+3y}\left(t\ge0\right)\\t^2-t-2=0\end{cases}}\)\(\Leftrightarrow t=\sqrt{x+3y}=2\Rightarrow\hept{\begin{cases}x+3y=4\\\sqrt{x-2y}=3y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4-3y\\\sqrt{4-5y}=3y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4-3y\\0< x\le\frac{4}{5}\\4-5y=9y^2\end{cases}}\Leftrightarrow\left(x;y\right)=\left(\frac{8}{3};\frac{4}{9}\right)\)
- Xét \(\sqrt{x-2y}=-2y\hept{\begin{cases}\sqrt{x-2y}=x+3y-2\\\sqrt{x-2y}=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2-5y\\y< 0\\4y^2+7y-2=0\end{cases}}\Leftrightarrow\left(x;y\right)=\left(12;-2\right)\)
Vậy...
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)