\(4x^2=y+\frac{3}{y}\)

                                    

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải các hệ phương trình sau bằng phương pháp thế:a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)Bài giảia) Từ phương trình \(x-y=3\Rightarrow x=3+y\)Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được:  \(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)                                       ...
Đọc tiếp

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)

b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)

b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)

Bài giải

a) Từ phương trình \(x-y=3\Rightarrow x=3+y\)

Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được: 

 

\(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)

                                          \(\Leftrightarrow-y=-7\Leftrightarrow y=7\)

Thay \(y=7\) vào \(x=3\) ta được: 

\(x=3+7=10\)

Vậy: Hệ phương trình có nghiệm: \(\left(10;7\right)\)

b) Từ phương trình \(4x+y=2\Rightarrow y=2-4x\)

Thay \(y=2-4x\)vào phương trình \(7x-3y=5\)ta được:

\(7x-3\left(2-4x\right)=5\Leftrightarrow7x-6+12x=5\)

                                             \(\Leftrightarrow19x=11\Leftrightarrow x=\frac{11}{19}\)

Thay \(x=\frac{11}{19}\)vào \(y=2-4x\)ta được \(y=2-4.\frac{11}{19}=2-\frac{44}{19}=-\frac{6}{19}\)

Vậy: Hệ phương trình có nghiệm \(\left(\frac{11}{19};-\frac{6}{11}\right)\)

c) Từ phương trình \(x+3y=-2\Rightarrow x=-2-3y\)

Thay \(x=-2-3x\)vào phương trình \(5x-4y=11\)ta được

\(5\left(-2-3y\right)-4y=11\Leftrightarrow-10-15y-4y=11\)

                                                    \(\Leftrightarrow-19=21\Leftrightarrow y=-\frac{21}{19}\)

Thay \(y=-\frac{21}{19}\)vào \(x=-2-3y\)ta được \(x=-2-3\left(-\frac{21}{19}\right)=-2+\frac{69}{19}=\frac{25}{19}\)

Vậy: Hệ phương trình có nghiệm: \(\left(\frac{25}{19};-\frac{21}{19}\right)\)

1
21 tháng 1 2018

-guể viết lại làm gì man?

2 tháng 9 2024

Lấy vế trừ vế ta được (x-y)(4x+4y+1-3/xy) rồi tự giải tiếp 

2 tháng 9 2024

Cái đó bằng 0 

3 tháng 1 2020

1. \(\hept{\begin{cases}x^2+2y^2=4x-1\\y^2+2x^2=4y-1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x^2+2y^2\right)-\left(y^2+2x^2\right)=4x-1-\left(4y-1\right)\\\left(x^2+2y^2\right)+\left(y^2+2x^2\right)=4x-1+4y-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y^2-x^2=4x-4y\left(1\right)\\3\left(x^2+y^2\right)=4\left(x+y\right)-2\left(2\right)\end{cases}}\)

Từ ( 1 ) \(\Rightarrow\left(y-x\right)\left(x+y\right)-4\left(x-y\right)=0\Leftrightarrow\left(y-x\right)\left(x+y+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-4\end{cases}}\)

Với x = y thì thay vào ( 2 ), ta được : \(6x^2-8x+2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)

Với x + y = -4  thay vào ( 2 ), ta được : \(3\left[\left(x+y\right)^2-2xy\right]=4.\left(-4\right)-2\)

\(\Leftrightarrow-6xy=-66\Leftrightarrow xy=11\)

Ta được hệ phương trình : \(\hept{\begin{cases}x+y=-4\\xy=11\end{cases}}\) mà hệ phương trình này vô nghiệm 

2. Ta cần chứng minh BĐT : \(a^3+b^3\ge ab\left(a+b\right)\)   với a,b > 0 

Thật vậy, xét hiệu : 

\(a^3+b^3-ab\left(a+b\right)=a^2\left(a-b\right)+b^2\left(b-a\right)=\left(a-b\right)\left(a^2-b^2\right)=\left(a-b\right)^2\left(a+b\right)\)\(\ge\)0

Áp dụng BĐT trên, ta có : \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

Tương tự : ....

\(\Rightarrow\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{x^3+z^3+1}\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}\)

\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)

Vậy GTLN của biểu thức là 1 khi x = y = z = 1

21 tháng 2 2017

Câu này với câu ah vừa HD có chung cách, thật ra cái này dặt ẩn phụ là sẽ chuyển về cái kia nhé!