Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ phương trình ban đầu ta có :
\(\begin{cases}x^3-2x^2+2x+1=2y\\y^3-2y^2+2y+1=2x\end{cases}\) \(\Leftrightarrow\begin{cases}f\left(x\right)=2y\\f\left(y\right)=2x\end{cases}\) với \(f\left(t\right)=t^3-2t^2+2t+1\)
Ta có \(f'\left(t\right)=3t^2-4t+2>0\), với mọi \(t\in R\) nên f đồng biến trên R
* Nếu \(x>y\Rightarrow2x>2y\Rightarrow f\left(y\right)< f\left(x\right)\Rightarrow y>x\) (Mâu thuẫn)
* Nếu \(x< y\Rightarrow2x< 2y\Rightarrow f\left(y\right)< f\left(x\right)\Rightarrow y< x\) (Mâu thuẫn)
* Vậy \(x=y\) , ta có hệ phương trình ban đầu tương đương :
\(\begin{cases}x=y\\x^3-2x^2+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=y\\x\in\left\{1;\frac{1\pm\sqrt{5}}{2}\right\}\end{cases}\)
Vậy hệ phương trình đã cho có nghiệm :
\(\left(x;y\right)=\left(1;1\right);\left(\frac{1+\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right);\left(\frac{1-\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\right)\)
\(\begin{cases}y^2-x\sqrt{\frac{y^2+2}{x}}=2x-2\left(1\right)\\\sqrt{y^2+1}+\sqrt[3]{2x-1}=1\left(2\right)\end{cases}\)
Điều kiện \(x>0\)
Chia cả 2 vế của phương trình (1) cho \(x\) ta được :
\(\frac{y^2+2}{x}-\sqrt{\frac{y^2+2}{x}}-2=0\)
\(\Leftrightarrow\begin{cases}\sqrt{\frac{y^2+2}{x}=-1}\\\sqrt{\frac{y^2+2}{x}=2}\end{cases}\) \(\Leftrightarrow\frac{y^2+2}{x}=4\)
\(\Leftrightarrow y^2=4x+2\)
Thế vào phương trình (2) ta được : \(\sqrt{4x-1}+\sqrt[3]{2x-1}=1\)
Đặt \(\sqrt{4x-1}=u,\left(u\ge0\right),\sqrt[3]{2x-1}=v\) ta có hệ : \(\begin{cases}u+v=1\\u^2-2v^3=1\end{cases}\)
Giải hệ ta được \(u=1;v=0\Rightarrow x=\frac{1}{2};y=0\)
Vậy nghiệm của hệ phương trình là : \(x=\frac{1}{2};y=0\)
(Nhân cả hai vế phương trình thứ hai với 2)
(Lấy phương trình thứ hai trừ đi phương trình thứ nhất).
Vậy hệ phương trình có nghiệm