Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
câu này quen ha
cái này giả sử x+1>=y-5, rồi cho chúng = nhau
hoặc liên hợp cũng được (PT1)
bài này đơn giản mà nghĩ sâu sa quá :(
Pt (2) của hệ ta có: \(\sqrt{y\left(x-1\right)}+\sqrt{x^2-y}=x\sqrt{x}\)
\(\sqrt{xy-y}-\sqrt{x^2-y}=\frac{xy-y-\left(x^2-y\right)}{\sqrt{y\left(x-1\right)}+\sqrt{x^2-y}}\)\(=\frac{x\left(y-x\right)}{x\sqrt{x}}=\frac{y-x}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{xy-y}=\frac{y-x}{\sqrt{x}}+x\sqrt{x}=\frac{x^2-x+y}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{y\left(x^2-x\right)}=x^2-x+y\)
\(\Rightarrow4y\left(x^2-x\right)=\left(x^2-x+y\right)^2\)
\(\Leftrightarrow\left(y-x^2+x\right)^2=0\Leftrightarrow y=x^2-x\). Thay vào pt (1) của hệ ta dc:
\(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x^2+x-1}\le\frac{x^2+x-1+1}{2}=\frac{x^2+x}{2}\)
\(\sqrt{-x^2+x+1}\le\frac{-x^2+x+1+1}{2}=\frac{-x^2+x+2}{2}\)
Cộng theo vế ta có: \(x^2-x+2\le\frac{x^2+x}{2}+\frac{-x^2+x+2}{2}=x+1\)
\(\Leftrightarrow\left(x-1\right)^2\le0\Leftrightarrow x=1\Rightarrow y=1\) (thỏa mãn)
Vậy....
Đã thử thế đáp số \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)vào hệ ban đầu để kiểm tra chưa thế b