K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

Câu trả lời cuối cùng của năm. Bính Thân

​<=> 6a-3b=27 và 6a+4b=34​

​7b=34-9=(34-27)=7>b=1=>a=4

​hệ mới

​x^2+2xy+y^2=16 và x^2-2xy+y^2=1

​<=>4xy=15=> xy=15/4

​hệ mới.1

​x+y=4 và xy=15/4 => (x,y)=là nghiệm p^2-4p+15/4

​hệ mói 2<=> x+y=-4 và xy=15/4=>(x,y) là nghiệm p^2+4p+15/4

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

1. Ta có:

\(\Leftrightarrow \left\{\begin{matrix} x+y+3xy=21\\ x^2+y^2-xy=-15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y+3xy=21\\ (x+y)^2-3xy=-15\end{matrix}\right.\)

Đặt $x+y=a; xy=b$ thì HPT trở thành:\( \left\{\begin{matrix} a+3b=21\\ a^2-3b=-15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3b=21-a\\ a^2-3b+15=0\end{matrix}\right.\)

\(\Rightarrow a^2-(21-a)+15=0\Leftrightarrow a^2+a-6=0\)

\(\Leftrightarrow (a-2)(a+3)=0\Rightarrow a=2\) hoặc $a=-3$

Nếu $a=2$ thì $b=\frac{19}{3}$. Như vậy $x+y=2; xy=\frac{19}{3}$

Áp dụng định lý Viet đảo suy ra $x,y$ là nghiệm của PT $X^2-2X+\frac{19}{3}=0$ (pt vô nghiệm)

Nếu $a=-3$ thì $b=8$. Áp dụng định lý Viet đảo thì $x,y$ là nghiệm của PT $X^2+3X+8=0$ (pt vô nghiệm)

Tóm lại HPT vô nghiệm.

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

2. 

HPT \(\Leftrightarrow \left\{\begin{matrix} (x+xy+y)^3-3(x+xy)(x+y)(xy+y)=17\\ x+xy+y=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 5^3-3(x+xy)(x+y)(xy+y)=17\\ (x+1)(y+1)=6\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x+xy)(x+y)(xy+y)=36\\ (x+1)(y+1)=6\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} xy(x+y)(x+1)(y+1)=36\\ (x+1)(y+1)=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy(x+y)=6\\ x+y+xy=5\end{matrix}\right.\)

Theo định lý Viet đảo thì $xy,x+y$ là nghiệm của PT:

$X^2-5X+6=0$

$\Rightarrow (xy,x+y)=(3,2); (2,3)$

Nếu $(xy,x+y)=(3,2)$ thì theo Viet đảo thì $x,y$ là nghiệm của PT $K^2-2K+3=0$ (vô nghiệm)

Nếu $(xy,x+y)=(2,3)$ thì theo Viet đảo thì $x,y$ là nghiệm của PT $K^2-3K+2=0$

$\Rightarrow (x,y)=(1,2); (2,1)$

 

11 tháng 1 2023

\(a.\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}-2=-1\\\dfrac{4}{x}+\dfrac{3}{y}-2=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a-b-2=-1\\4a+3b-2=5\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{y}=b\))

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{10}{7}\\b=\dfrac{3}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{10}{7}\Rightarrow x=\dfrac{7}{10}\\\dfrac{1}{y}=\dfrac{3}{7}\Rightarrow y=\dfrac{7}{3}\end{matrix}\right.\)

\(b.\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{5}{\left(x+y\right)}=2\\\dfrac{3}{x}+\dfrac{1}{\left(x+y\right)}=\dfrac{17}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a+5b=2\\3a+b=\dfrac{17}{10}\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{x+y}=b\))

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\\\dfrac{1}{x+y}=\dfrac{1}{5}\Rightarrow y=3\end{matrix}\right.\)

\(c.\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{y+1}=7\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=7\\5a-2b=4\end{matrix}\right.\) (với \(\dfrac{1}{x-1}=a-\dfrac{1}{y+1}=b\))

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=2\Rightarrow x=\dfrac{3}{2}\\\dfrac{1}{y+1}=3\Rightarrow y=-\dfrac{2}{3}\end{matrix}\right.\)

\(d.\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{y-1}}=1\\\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{y-1}}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\) (với \(\dfrac{1}{\sqrt{x-1}}=a-\dfrac{1}{\sqrt{y-1}}=b\))

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}=1\Rightarrow x=2\\\dfrac{1}{\sqrt{y-1}}=1\Rightarrow y=2\end{matrix}\right.\)

2 tháng 10 2019

\(\hept{\begin{cases}x+y+z=3\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\left(2\right)\\x^2+y^2+z^2=17\left(3\right)\end{cases}}\left(DK:x,y,z\ne0\right)\)

Ta co:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3>\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{3}\)

Vay HPT vo nghiem