K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a) Ta có: \(\text{Δ}=\left(m+1\right)^2-4\left(m-5\right)\)

\(=m^2+2m+1-4m+20\)

\(=m^2-2m+1+20\)

\(=\left(m-1\right)^2+20>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m

28 tháng 6 2021

â)ĐK;`x-2>=0`

`<=>x>=2`

c)ĐK:`2017/x>=0(x ne 0)`

Mà `2017>0`

`<=>x>0`

e)ĐK:`x^2+2017>=0`

`<=>x^2>=-2017AAx in RR`

b)ĐK:`2-3x>=0`

`<=>3x<=2`

`<=>x<=2/3`

d)ĐK:`(-2017)/(5-x)>=0(x ne 5)`

`<=>2017/(x-5)>=0`

Mà `2017>0`

`<=>x-5>0<=>x>5`

f)ĐK:`1-x^2>=0`

`<=>x^2<=1`

`<=>-1<=x<=1`

4 tháng 12 2021

1/

Để hàm số trên đồng biến 

Thì m-1 > 0 ⇔ m>1

2/

a,<bạn tự vẽ>

b,Theo phương trình hoành độ giao điểm

\(2x=-x+3\Leftrightarrow3x=3\Leftrightarrow x=1\)

Thay x=1 vào y=2x

y=2.1=2

Vậy tọa độ giao điểm A là (1;2)

3/ Để (d) đi qua điểm M (1;-2)

Thì x=1 và y=-2

Thay x=1 và y=-2 vào (d)

\(-2=a\cdot1+1\Leftrightarrow a=-3\)

vậy ....

4 tháng 12 2021

Bài 1:

Để hàm số bậc nhất \(y=\left(m-1\right)x+3\) đồng biến.

=> \(m-1>0.\)

<=> \(m>1.\)

Bài 2:

b) Xét phương trình hoành độ giao điểm của 2 hàm số trên ta có:

       \(\text{2x = -x + 3.}\)

<=> \(\text{2x + x - 3= 0.}\)

<=> \(\text{3x - 3 = 0.}\)

<=> \(x=1.\)

=>   \(y=2.\)

Vậy A(1; 2).

Bài 3:

Vì (d) đi qua điểm M(1; -2).

=> -2 = a. 1 + 1.

<=> a = -3.

Vậy a = -3. 

Câu 2:

1: \(y=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)x+4=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)\cdot x=\sqrt{3}+5-4=\sqrt{3}+1\)

=>\(x=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{\left(\sqrt{3}+1\right)^2}{3-1}=\dfrac{4+2\sqrt{3}}{2}=2+\sqrt{3}\)

2: \(x^2-2\left(1-m\right)x-2m-5=0\)

=>\(x^2+\left(2m-2\right)x-2m-5=0\)

a: \(\Delta=\left(2m-2\right)^2-4\left(-2m-5\right)\)

\(=4m^2-8m+4+8m+20\)

\(=4m^2+24>=24>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Câu 1:

2: Thay x=2 và y=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2a-\left(-1\right)=5\\b\cdot2+a\cdot\left(-1\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a=5+\left(-1\right)=4\\2b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\2b=a+4=6\end{matrix}\right.\)

=>a=2 và b=3

2: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)

Khi tăng mẫu số thêm 4 đơn vị thì phân số đó bằng 1/3 nên ta có:

\(\dfrac{a}{b+4}=\dfrac{1}{3}\)

=>3a=b+4

=>3a-b=4(1)

Khi giảm mẫu số đi 2 đơn vị thì phân số bằng với 2/3 nên ta có:

\(\dfrac{a}{b-2}=\dfrac{2}{3}\)

=>3a=2(b-2)

=>3a=2b-4

=>3a-2b=-4(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=4\\3a-2b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=8\\3a-b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=8\\3a=b+4=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=8\end{matrix}\right.\)(nhận)

Vậy: Phân số cần tìm là \(\dfrac{4}{8}\)

9 tháng 12 2023

loading...  loading...  

27 tháng 12 2018

em muon giup nhung moi co lop 8 ak sr

Bài 1: 

a: ĐKXĐ: \(x\ge\dfrac{3}{2}\)

8 tháng 11 2021

Bài 4:

\(a,A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ P=A:B=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m-\sqrt{x}+x\\ \Leftrightarrow x-1=m-\sqrt{x}+x\\ \Leftrightarrow m=\sqrt{x}-1\)