Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(HPT.\) \(\Leftrightarrow\left\{{}\begin{matrix}6\sqrt{x}+4\sqrt{y}=32.\\6\sqrt{x}-9\sqrt{y}=-33.\end{matrix}\right.\) \(\left(x\ge0;y\ge0\right).\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=16.\\13\sqrt{y}=65.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2.\\\sqrt{y}=5.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4.\\y=25.\end{matrix}\right.\) (TM).
2) \(HPT.\Leftrightarrow\) \(\left\{{}\begin{matrix}3\left|x\right|+12\left|y\right|=54.\\3\left|x\right|+\left|y\right|=10.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|+4\left|y\right|=18.\\\left|y\right|=4.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|=2.\\\left|y\right|=4.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2.\\x=-2.\end{matrix}\right.\\\left[{}\begin{matrix}y=4.\\y=-4.\end{matrix}\right.\end{matrix}\right.\)
sin 650=cos 350
\(cos70^0=sin30^0\)
\(tan80^0=cot20^0\)
\(cot68^0=tan32^0\)
câu 2 thì mk có pt nhưng mk ko bt giải
\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{10}\\x-y=15\end{matrix}\right.\)
\(a,\Leftrightarrow3m-2+m-2=2\\ \Leftrightarrow m=\dfrac{3}{2}\\ b,\text{PT giao Ox: }y=0\Leftrightarrow x=\dfrac{2-m}{3m-2}\Leftrightarrow OA=\left|\dfrac{m-2}{3m-2}\right|\\ \text{PT giao Oy: }x=0\Leftrightarrow y=m-2\Leftrightarrow OB=\left|m-2\right|\\ \Leftrightarrow S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot\left|\dfrac{m-2}{3m-2}\cdot\left(m-2\right)\right|=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{\left(m-2\right)^2}{\left|3m-2\right|}=1\\ \Leftrightarrow\left|3m-2\right|=\left(m-2\right)^2\Leftrightarrow\left[{}\begin{matrix}3m-2=m^2-4m+4\left(m\ge\dfrac{2}{3}\right)\\2-3m=m^2-4m+4\left(m< \dfrac{2}{3}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2-7m+6=0\left(m\ge\dfrac{2}{3}\right)\\m^2-m+2=0\left(vn\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=6\end{matrix}\right.\)
\(\hept{\begin{cases}a^3+b^3=9\left(1\right)\\a^2+2b^2=a+4b\left(2\right)\end{cases}}\)
Lấy \(\left(1\right)-3\left(2\right)\)
Ta có \(\left(a^3-3a^2+3a-1\right)+\left(b^3-6b^2+12b-8\right)=0\)
<=> \(\left(a-1\right)^3=-\left(b-2\right)^3\)
<=> \(a+b=3\)
Thay vào (1) ta được
\(\left(3-a\right)^3+a^3=9\)
=> \(\orbr{\begin{cases}a=2\Rightarrow b=1\\a=1\Rightarrow a=2\end{cases}}\)
Vậy \(\left(a,b\right)=\left(2,1\right);\left(1,2\right)\)
\(\sqrt{51-7\sqrt{8}}=\sqrt{7^2-7.2\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(7-\sqrt{2}\right)^2}=7-\sqrt{2}\)
(vì\(7=\sqrt{49}>\sqrt{2}\Rightarrow7-\sqrt{2}>0\))
a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức
Ta có các tính chất cua đồng dư thức và các tính chất sau:
Cho x là số tự nhiên
Nếu x lẻ thì => x^2 =1 (mod 8)
x^2 =-1(mod 5) hoặc x^2=0(mod 5)
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5)
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt
3a+1=m^2
2a+1 =n^2
=> m^2 -n^2 =a (1)
m^2 + n^2 =5a +2 (2)
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3)
Từ (2) ta có (m^2 + n^2 )=2(mod 5)
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5)
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5
từ pt ban đầu => n lẻ =>n^2=1(mod 8)
=> 3n^2=3(mod 8)
=> 3n^2 -1 = 2(mod 8)
=> (3n^2 -1)/2 =1(mod 8)
Từ (3) => m^2 = (3n^2 -1)/2
do đó m^2 = 1(mod 8)
ma n^2=1(mod 8)
=> m^2 - n^2 =0 (mod 8)
=> a chia hết cho 8
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40