Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề như vậy đúng không ạ
\(Q=-\frac{15}{3+\sqrt{6x-x^2-5}}.\)
ta xét \(6x-x^2-5\)
\(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-2\cdot3x+9-4\right)\)
\(=\left[\left(x-3\right)^2-4\right]\)
\(=-\left(x-3\right)^2+4\)
có \(-\left(x-3\right)^2+4\le4\)
\(\Rightarrow\sqrt{-\left(x-3\right)^2+4}\le\sqrt{4}\)
\(\Rightarrow0\le\sqrt{-\left(x-3\right)^2+4}\le2\)
có \(3+\sqrt{6x-x^2-5}\)
\(\Rightarrow3\le3+\sqrt{-\left(x-3\right)^2+4}\le5\)
\(\Rightarrow-5\le-\frac{15}{3+\sqrt{6x-x^2-5}}\le3\)
=> GTNN của Q là -3
=> GTLN của Q là -5
với \(x-3=0;x=3\)
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
Câu 1:
A = (3 - y)(4 - x)(2y + 3x)
6A = (6 - 2y)(12 - 3x)(2y + 3x)
Ta có: \(\hept{\begin{cases}0\le x\le4\\0\le y\le3\end{cases}\Leftrightarrow\hept{\begin{cases}4-x\ge0\\3-y\ge0\\2y+3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}12-3x\ge0\\6-2y\ge0\\2y+3x\ge0\end{cases}}}\)
Áp dụng BĐT cô-si ta được:
\(\left(12-3x\right)+\left(6-2y\right)+\left(2y+3x\right)\ge3.\sqrt[3]{\left(12-3x\right)\left(6-2y\right)\left(2y+3x\right)} \)
\(\Leftrightarrow3.\sqrt[3]{6A}\le18\Leftrightarrow A\le36\)
Dấu = xảy ra khi:
12 - 3x = 6 - 2y = 2y + 3x
=> \(\hept{\begin{cases}3x+4y=6\\6x+2y=12\end{cases}\Rightarrow\hept{\begin{cases}x=2\left(n\right)\\y=0\left(n\right)\end{cases}}}\)
Vậy.....
Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath
1) ta có
\(\sqrt{x-2}\ge0\)với mọi x
=>A=1+\(\sqrt{x-2}\ge1\)
dấu "=" xảy ra khi:
x-2=0
<=>x=2
Vậy GTNN của A là 1 tại x=2
2)
ta có :
\(-\sqrt{2x-1}\le0\)
=>B=5-\(\sqrt{2x-1}\le5\)
Dấu "=" xảy ra khi:
2x-1=0
<=>2x=1
<=>x=1/2
Vậy GTLN của B là 5 tại x=1/2