Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
=-5(x^2+4/5x+19/25)
=-5(x^2+2x.2/5+4/25+3/5)
=-5(x+2/5)^2-3
Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3
Vậy Min là-3
\(A=3x^2+5x-2\)
\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)
\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)
Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)
Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)
mk làm ý a thôi, mấy ý sau dựa vào mà làm.
A = \(3x^2+5x-2\)
=> \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)
\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra <=> x = - 5/6.
Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.
Ta có:
\(G=x^2+3y^2+2xy-6y+3\)
\(G=\left(x^2+2xy+y^2\right)+\left(2y^2-6y+\frac{18}{4}\right)-\frac{3}{2}\)
\(G=\left(x+y\right)^2+2\left(y-\frac{3}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+y\right)^2=0\\2\left(y-\frac{3}{2}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy Min(G) = -3/2 khi \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
G = x2 + 3xy2 + 2xy - 6y + 3
<=> G = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) - 6
<=> G = ( x + y )2 + ( y - 3 )2 - 6
Vì ( x + y )2\(\ge\)0 ; ( y - 3 )2\(\ge\)0\(\forall\)x ; y
=> G = ( x + y )2 + ( y - 3 )2 - 6\(\ge\)- 6
Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\y=3\end{cases}}\)
Vậy minG = - 6 <=> x = - 3 ; y = 3
Đề có thiếu không vậy ?
À ờ bài này vẫn làm được :)
A = x2 + 3y2 + 2xy + 4y + 5
= ( x2 + 2xy + y2 ) + ( 2y2 + 4y + 2 ) + 3
= ( x + y )2 + 2( y2 + 2y + 1 ) + 3
= ( x + y )2 + 2( y + 1 )2 + 3 ≥ 3 ∀ x
Dấu "=" xảy ra <=> x = 1 ; y = -1
=> MinA = 3 <=> x = 1 ; y = -1